首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(11):2646-2655
Guanine‐ionic liquid derived ordered mesoporous carbon (GIOMC) decorated with gold nanoparticles was used as electrocatalyste for NADH oxidation and electrochemical platform for immobilization of glucose dehydrogenase (GDH) enzyme. The resulting GIOMC/AuNPs on the glassy carbon electrode can be used as novel redox‐mediator free for NADH sensing and this integrated system (GIOMC/AuNPs/GDH) shows excellent electrocatalytic activity toward glucose oxidation. Furthermore, the ionic liquid derived ordered mesoporous carbon derivate with Ph‐SO3H (IOMC‐PhSO3H) decorated with AuNPs has been developed to bilirubin oxidase enzyme (BOD) immobilization and the GC/IOMC‐PhSO3H/BOD integrated system shows excellent bioelectrocatalytic activity toward oxygen reduction reaction. The proposed mesostructured platforms decorated by AuNPs have been developed to enhance mass transfer and charge transfer from biocatalyst to electrode, leading these bioanode and biocathode used for biofuel cell assembly. Integration designed bioanode and biocathode yielding a membrane‐less glucose/O2 biofuel cell with power density of 33 (mW.cm−2) at 257 mV. The open circuit voltage of this biofuel cell and maximum produced current density were 508 mV and 0.252 (mA.cm−2) respectively.  相似文献   

2.
《Electroanalysis》2017,29(4):950-954
Biofuel cells based on electrocatalytic oxidation of NADH and reduction of H2O2 have been prepared using carbon fiber electrodes functionalized with graphene nano‐flakes. The electrochemical oxidation of NADH was catalyzed by Meldola's blue (MB), while the reduction of H2O2 was catalyzed by hemin, both catalysts were adsorbed on the graphene flakes due to their π‐π staking. In the next set of experiments, the MB‐ and hemin‐electrodes were additionally modified with glucose dehydrogenase (GDH) and glucose oxidase (GOx), respectively. The enzyme catalyzed reactions in the presence of glucose, NAD+ and O2 resulted in the production of NADH and H2O2 in situ. The produced NADH and H2O2 were oxidized and reduced, respectively, at the bioelectrocatalytic electrodes, thus producing voltage and current generated by the biofuel cell. The enzyme‐based biofuel cells operated in a human serum solution modelling an implantable device powered from the natural biofluid. Finally, two enzyme‐based biofuel cell connected in series and operating in the serum solution produced electrical power sufficient for activation of an electronic watch used as an example device.  相似文献   

3.
We report a prototype air‐breathing carbon cloth‐based electrode that was fabricated starting from a commercially available screen‐printed electrode equipped with a transparent ITO working electrode (DropSens, ref. ITO10). The fabrication of the air‐breathing electrodes is straightforward, shows satisfactory reproducibility and a good electrochemical response as evaluated by means of [Fe(CN)6]3?/4? voltammetry. The gas‐diffusion electrodes were successfully modified with the O2 reducing enzyme bilirubin oxidase from Myrothecium verrucaria in a direct electron transfer regime. The enzyme modified electrodes showed a remarkable high current density for O2 reduction in passive air‐breathing mode of up to 5 mA cm?2. Moreover, the enzyme modified electrodes were applied as O2 reducing biocathodes in a glucose/air enzymatic biofuel cell in combination with a high current density glucose oxidase/redox polymer bioanode. The biofuel cell provides a high maximum power density of (0.34±0.02) mW cm?2 at 0.25 V. The straightforward design, low cost and the high reproducibility of these electrodes are considered as basis for standardized measurements under gas‐breathing conditions and for high throughput screening of gas converting (bio‐)catalysts.  相似文献   

4.
《Electroanalysis》2006,18(6):587-594
This study describes the direct electron transfer of multi‐copper oxidases, i.e., laccase (from Trametes versicolor) and bilirubin oxidase (BOD, from Myrothecium verrucaria) at multiwalled carbon nanotubes (MWNTs) noncovalently functionalized with biopolymers of cellulose derivatives, i.e., hydroxyethyl cellulose (HEC), methyl cellulose (MC), and carboxymethyl cellulose (CMC). The functionalization of the MWNTs with the cellulose derivatives is found to substantially solubilize the MWNTs into aqueous media and to avoid their aggregation on electrode surface. Under anaerobic conditions, the redox properties of laccase and BOD are difficult to be defined with cyclic voltammetry at either laccase/MWNT‐modified or BOD/MWNT‐modified electrodes. The direct electron transfer properties of laccase and BOD are thus studied in terms of the bioelectrocatalytic activities of the laccase/MWNT‐modified and BOD/MWNT‐modified electrodes toward the reduction of oxygen and found to be facilitated at the functionalized MWNTs. The possible application of the laccase‐catalyzed O2 reduction at the laccase/MWNT‐modified electrode is illustrated by constructing a CNT‐based ascorbate/O2 biofuel cell with the MWNT‐modified electrode as the anode for the oxidation of ascorbate biofuel.  相似文献   

5.
An electrochemical noise (ECN) device was utilized for the first time to study and characterize a glucose/O2 membraneless biofuel cell (BFC) and a monopolar glucose BFC. In the glucose/O2 membraneless BFC, ferrocene (Fc) and glucose oxidase (GOD) were immobilized on a multiwalled carbon nanotubes (MWCNTs)/Au electrode with a gelatin film at the anode; and laccase (Lac) and an electron mediator, 2,2′‐azinobis (3‐ethylbenzothiazoline‐6‐sulfonate) diammonium salt (ABTS), were immobilized on a MWCNTs/Au electrode with polypyrrole at the cathode. This BFC was performed in a stirred acetate buffer solution (pH 5.0) containing 40 mmol/L glucose in air, with a maximum power density of 8 μW/cm2, an open‐circuit cell voltage of 0.29 V, and a short‐circuit current density of 85 μA/cm2, respectively. The cell current at the load of 100 kΩ retained 78.9% of the initial value after continuous discharging for 15 h in a stirred acetate buffer solution (pH 5.0) containing 40 mmol/L glucose in air. The performance decrease of the BFC resulted mainly from the leakage of the ABTS mediator immobilized at the cathode, as revealed by the two‐channel quartz crystal microbalance technique. In addition, a monopolar glucose BFC was performed with the same anode as that in the glucose/O2 membraneless BFC in a stirred phosphate buffer solution (pH 7.0) containing 40 mmol/L glucose, and a carbon cathode in Nafion‐membrane‐isolated acidic KMnO4, with a maximum power density of 115 μW/cm2, an open‐circuit cell voltage of 1.24 V, and a short‐circuit current density of 202 μA/cm2, respectively, which are superior to those of the glucose/O2 membraneless BFC. A modification of the anode with MWCNTs for the monopolar glucose BFC increased the maximum power density by a factor of 1.8. The ECN device is highly recommended as a convenient, real‐time and sensitive technique for BFC studies.  相似文献   

6.
This paper reports a novel mediator for the oxidation of β‐nicotinamide adenine dinucleotide (NAD+/NADH), an electropolymeric film (pAPRu) of [Ru(NH2‐phen)3]2+. A pAPRu‐modified electrode was prepared via electropolymerization and exhibited catalytic activity toward the electrochemical oxidation of NADH due to the imine moieties of pAPRu. The electrochemical oxidation of ethanol was observed using an alcohol dehydrogenase (ADH)‐immobilized electrode. A compartmentless ethanol/O2 biofuel cell composed of an ADH anode and a bilirubin oxidase cathode was constructed. The maximum current density and the maximum power density of the biofuel cell were 190 µA cm?2 and 31 µW cm?2 (at 0.29 V), respectively.  相似文献   

7.
This study demonstrated a novel nanographene platelets (NGPs)-based glucose/O2 biofuel cell (BFC) with the glucose oxidase (GOD) as the anodic biocatalysts and the laccase as the cathodic biocatalysts. The GOD/NGPs-modified electrode exhibited good catalytic activity towards glucose oxidation and the laccase/NGPs-modified electrode exhibited good catalytic activity towards O2 electroreduction. The maximum power density was ca. 57.8 μW cm? 2 for the assembled glucose/O2 NGPs-based BFC. These results indicated that the NGPs were very useful for the future development of novel carbon-based nanomaterials BFC device.  相似文献   

8.
《Electroanalysis》2017,29(6):1602-1611
Electrodes composed of carbon fibers were modified with graphene nano‐sheets in order to increase their surface area and facilitate electrochemical reactions. Electrocatalytic species, such as Meldola's blue (MB) and hemin were immobilized on the graphene surface due to their π‐π stacking and then used for electrocatalytic oxidation of NADH and reduction of H2O2, respectively. Further modification of these electrodes with enzymes producing NADH and H2O2 in situ (lactate dehydrogenase, LDH, and lactate oxidase, LOx, respectively), allowed assembling of a biofuel cell operating in the presence of lactate, oxygen and NAD+. The cathode of the biofuel cell required lactate and O2 for its operation, while the anode operated in the presence of lactate and NAD+. Notably, both bioelectrocatalytic electrodes operated in the presence of lactate, one producing H2O2 in the reaction catalyzed by LOx in the presence of O2, second producing NADH in the reaction catalyzed by LDH in the presence of NAD+. Both reactions were performed in the biofuel cell without separation of the cathodic and anodic solutions and with no need of a membrane. The biofuel cell was tested in solutions mimicking human sweat and then in real human sweat samples, demonstrating substantial power release being able to activate electronic devices.  相似文献   

9.
A Y-shaped microfluidic channel is applied for the first time to the construction of a glucose/O2 biofuel cell, based on both laminar flow and biological enzyme strategies. During operation, the fuel and oxidant streams flow parallel at gold electrode surfaces without convective mixing. At the anode, the glucose oxidation is performed by the enzyme glucose oxidase whereas at the cathode, the oxygen is reduced by the enzyme laccase, in the presence of specific redox mediators. Such cell design protects the anode from an interfering parasite reaction of O2 at the anode and offers the advantage of using different streams of oxidant and fuel for optimal performance of the enzymes. Electrochemical characterizations of the device show the influence of the flow rate on the output potential and current density. The maximum power density delivered by the assembled biofuel cell reached 110 μW cm?2 at 0.3 V with 10 mM glucose at 23 °C. The microfluidic approach reported here demonstrates the feasibility of advanced microfabrication techniques to build an efficient microfluidic glucose/O2 biofuel cell device.  相似文献   

10.
In this research a novel osmium complex was used as electrocatalyst for electroreduction of oxygen and H2O2 in physiological pH solutions. Electroless deposition at a short period of time (60 s), was used for strong and irreversible adsorption of 1,4,8,12‐tetraazacyclotetradecane osmium(III) chloride (Os(III)LCl2) ClO4 onto single‐walled carbon nanotubes (SWCNTs) modified GC electrode. The modified electrode shows a pair of well defined and reversible redox couple, Os(IV)/Os(III) at wide pH range (1–8). The glucose biosensor was fabricated by covering a thin film of glucose oxidase onto CNTs/Os‐complex modified electrode. The biosensor can be used successfully for selective detection of glucose based on the decreasing of cathodic peak current of oxygen. The fabricated biosensor shows high sensitivity, 826.3 nA μM?1cm?2, low detection limit, 56 nM, fast response time <3 s and wide calibration range 1.0 μM–1.0 mM. The biosensor has been successfully applied to determination of glucose in human plasma. Because of relative low applied potential, the interference from electroactive existing species was minimized, which improved the selectivity of the biosensor. The apparent Michaelis‐Menten constant of GOx on the nanocomposite, 0.91 mM, exhibits excellent bioelectrocatalytic activity of immobilized enzyme toward glucose oxidation. Excellent electrochemical reversibility, high stability, technically simple and possibility of preparation at short period of time are of great advantages of this glucose biosensor.  相似文献   

11.
Glucose-oxidizing enzymes are widely used in electrochemical biosensors and biofuel cells; in most applications glucose oxidase, an enzyme with non-covalently bound FAD and low capability of direct electronic communications with electrodes, is used. Here, we show that another glucose-oxidizing enzyme with a covalently bound FAD center, hexose oxidase (HOX), adsorbed on graphite, exhibits a pronounced non-catalytic voltammetric response from its FAD, at − 307 mV vs. Ag/AgCl, pH 7, characterized by the heterogeneous electron transfer (ET) rate constant of 29.2 ± 4.5 s 1. Direct bioelectrocatalytic oxidation of glucose by HOX proceeded, although, with a 350 mV overpotential relative to FAD signals, which may be connected with a limiting step in biocatalysis under conditions of the replacement of the natural redox partner, O2, by the electrode; mediated bioelectrocatalysis was consistent with the potentials of a soluble redox mediator used. The results allow development of HOX-based electrochemical biosensors for sugar monitoring and biofuel cells exploiting direct ET of HOX, and, not the least, fundamental studies of ET non-complicated by the loss of FAD from the protein matrix.  相似文献   

12.
The incorporation of highly active but also highly sensitive catalysts (e.g. the [FeFe] hydrogenase from Desulfovibrio desulfuricans) in biofuel cells is still one of the major challenges in sustainable energy conversion. We report the fabrication of a dual‐gas diffusion electrode H2/O2 biofuel cell equipped with a [FeFe] hydrogenase/redox polymer‐based high‐current‐density H2‐oxidation bioanode. The bioanodes show benchmark current densities of around 14 mA cm?2 and the corresponding fuel cell tests exhibit a benchmark for a hydrogenase/redox polymer‐based biofuel cell with outstanding power densities of 5.4 mW cm?2 at 0.7 V cell voltage. Furthermore, the highly sensitive [FeFe] hydrogenase is protected against oxygen damage by the redox polymer and can function under 5 % O2.  相似文献   

13.
《Electroanalysis》2017,29(10):2254-2260
In this study, we have carried out electrodeposition of tantalum (Ta) nanostructures on pencil lead electrode in non‐aqueous media at room temperature by applying a constant potential. The deposited Ta on pencil lead was examined for the catalytic effect regarding hydrogen peroxide (H2O2) reduction with voltammetry and amperometry. Ta/pencil lead electrode exhibited amperometric sensitivity of 0.317 μA mM−1 cm−2 and fast response time of 0.75 s, where selective detection of H2O2 was fulfilled without interruption from common electroactive biomaterials such as O2, uric acid, ascorbic acid, dopamine, acetamidophenol, and glucose. For practical applications, the dynamic concentration changes of H2O2 during catalase and glucose oxidase‐involved reactions, either eliminating or producing H2O2, were successfully traced in real time with as‐prepared electrode. From the kinetics study for catalase and glucose oxidase, we evaluated Michaelis constants (K mapp) as 7.8 mM for catalase and 37 mM for glucose oxidase, respectively.  相似文献   

14.
One of the major problems in amperometric biosensors based on detection of H2O2 produced by enzymatic reaction between oxidase enzymes and substrate is the interference of redox active compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA). To minimize these interferences, sodium bismuthate was used for the first time as an insoluble pre‐oxidant in the flow injection (FI) amperometric glucose biosensor at a Glucose oxidase (GOx) immobilized Pt/Pd bimetallic modified pre‐anodized pencil graphite electrode (p.PGE). In this context, these interfering compounds were injected into a flow injection analysis (FIA) system using an injector which was filled with NaBiO3. Thus, these interferents were converted into their redox inactive oxidized forms before reaching the electrode in the flow cell. While glucose was not influenced by the pre‐oxidant in the injector, the huge oxidation peak currents of the interferents decreased significantly in the biosensor. FI amperometric current time curves showed that the AA, DA and UA were minimized by 96 %, 86 %, and 98 % respectively, in the presence of an equivalent concentration of interferences in a 1.0 mM glucose solution. The proposed FI amperometric glucose biosensor exhibits a wide linear range (0.01–10 mM, R2=0.9994) with a detection limit of 2.4×10?3 mM. Glucose levels in the artificial serum and two real samples were successfully determined using the fabricated FI amperometric biosensor.  相似文献   

15.
《Electroanalysis》2018,30(9):2044-2052
Acid functionalized multi‐walled carbon nanotubes (f‐MWCNTs) were decorated with Au and Fe2O3 nanoparticles (FeONPs) and deposited on glassy carbon electrode (GCE). The resulting hybrid Au/Fe2O3/f‐MWCNTs/GCE electrode and the one further modified by glucose oxidase were compared for detection of glucose. FeONPs and Au were deposited on the f‐MWCNTs by sonication‐assisted precipitation and deposition‐precipitation methods, respectively. The morphology and structure of the samples were characterized by transmission electron microscopy, scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. A uniform distribution of FeONPs with an average size of 5 nm increased the surface area of functionalized nanotubes from 39 to 50 m2/g. The electrocatalytic glucose detection on the modified electrodes was evaluated using cyclic voltammetry and chronoamperometry in 0.1 M phosphate buffer solution at pH 7.0. The non‐enzymatic and enzymatic electrodes show sensitivity of 512.4 and 921.4 mA/mM.cm2 and detection limit of 1.7 and 0.9 mM, respectively. The enzymatic and enzymeless electrodes retained more than 70 % and 80 % of their cathodic faradic current after 70 days, respectively. The sensing mechanism of the non‐enzymatic biosensor is described through the reaction of glucose with iron (III) ions, while in the case of enzymatic electrode, glucose is oxidized by glucose oxidase.  相似文献   

16.
Combinations of bilirubin oxidase and metal complexes: [W(CN)8]3−/4−, [Os(CN)6]3−/4− and [Mo(CN)8]3−/4− (the formal potentials, E0′(M), being 0.320, 0.448, and 0.584 V vs. Ag|AgCl, respectively, at pH 7.0), allowed bioelectrocatalytic reduction of O2 to water at their formal potentials near neutral pH. The O2 reduction current appeared even at the standard potential of the O2/H2O redox couple, E0′(O2/H2O), when [Mo(CN)8]3−/4− was used at pH 7.4, though the magnitude was small. The magnitude of the bioelectrocatalytic current systematically decreased with the decrease in the potential difference between E0′(O2/H2O) and E0′(M). A limiting current as large as 17 mA/cm2 of a projected electrode surface area was obtained at 0.25 V (−0.37 V vs. E0′(O2/H2O)) for the O2 reduction at pH 7.0 with a carbon felt electrode modified with electrostatically entrapped bilirubin oxidase and [W(CN)8]3−/4− at the electrode rotation rate of 4000 rpm.  相似文献   

17.
A novel glucose biosensor was developed based on the immobilization of glucose oxidase (GOx) on reduced graphene oxide incorporated with electrochemically deposited platinum and palladium nanoparticles (PtPdNPs). Reduced graphene oxide (RGO) was more hybridized by chemical and heat treatment. Bimetallic nanoparticles were deposited electrochemically on the RGO surface for potential application of the Pd? Pt alloy in biosensor preparation. The as‐prepared hybrid electrode exhibited high electrocatalytic activities toward H2O2, with a wide linear response range from 0.5 to 8 mM (R2=0.997) and high sensitivity of 814×10?6 A/mMcm2. Furthermore, glucose oxidase with active material was integrated by a simple casting method on the RGO/PdPtNPs surface. The as‐prepared biosensor showed good amperometric response to glucose in the linear range from 2 mM to 12 mM, with a sensitivity of 24×10?6 A/mMcm2, a low detection limit of 0.001 mM, and a short response time (5 s). Moreover, the effect of interference materials, reproducibility and the stability of the sensor were also investigated.  相似文献   

18.
The present study reports the development of operational membrane-less glucose/O2 biofuel cell based on oxygen contactor. Glucose oxidation was performed by glucose oxidase (GOx) co-immobilized with the mediator 8-hydroxyquinoline-5-sulfonic acid hydrate (HQS) at the anode, whereas oxygen was reduced by laccase co-immobilized with 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS2−) at the cathode. Both enzymes and mediators were immobilized within electropolymerized polypyrrole polymers.Nevertheless, this system is limited by the secondary reaction of O2 electro-reduction at the anode that reduces the electron flow through the anode and thus the output voltage. In order to avoid the loss of current at the anode in glucose/O2 biofuel cell, we developed a strategy to supply dissolved oxygen separate from the electrolyte. Porous carbon tubes were used as electrodes and modified on the external surface by the couple enzyme/mediator. The inside of the cathode tube was continuously supplied with saturated dioxygen solution diffusing from the inner to the external surface of the porous tube. The assembled biofuel cell was studied under nitrogen at 37 °C in phosphate buffer at pH 5.0 and 7.0. The maximum power density reached 27 μW cm−2 at a cell voltage of 0.25 V at pH 5.0 with 10 mM glucose. The power density was twice as high as compared to the same system with oxygen bubbling directly in the cell.  相似文献   

19.
A concentric glucose/O2 biofuel cell has been developed. The device is constituted of two carbon tubular electrodes, one in the other, and combines glucose electrooxidation at the anode and oxygen electroreduction at the cathode. The anodic catalyst is glucose oxidase co-immobilized with the mediator 8-hydroxyquinoline-5-sulfonic acid hydrate, and the cathodic catalyst is bilirubin oxidase co-immobilized with the mediator 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt. Both enzymes and mediators are entrapped at the surface of the tubular electrodes by an electrogenerated polypyrrole polymer. The originality of the concentric configuration is to compartmentalize the anode and cathode electrodes and to supply dissolved oxygen separate from the electrolyte in order to avoid secondary reactions. The dissolved oxygen circulates through the inside of the cathode tube and diffuses from the inner to the external surface of the tube to react directly with the immobilized bilirubin oxidase. The assembled biofuel cell is studied at 37 °C in phosphate buffer pH 7.4. We show the influence of the thickness of the polypyrrole polymer on the electrochemical activity of the biocathodes. We also demonstrate the effect of the chemical reticulation of the enzymes by glutaraldehyde within the polymer on the performances of the bioelectrodes. The maximum power density delivered by the assembled glucose/O2 biofuel cell reaches 42 μW cm−2, evaluated from the geometric area of the electrodes, at a cell voltage of 0.30 V with 10 mM glucose. The results demonstrate that the concentric design of the BFC based on compartmented electrodes is a promising architecture for further development of micro electronic devices.  相似文献   

20.
A simple electrochemical approach to evaluate oxygen reduction catalysts using an inexpensive screen‐printed ring disk carbon electrode system, consisting of a ring electrode deposited with MnO2 and a disk electrode modified with the catalysts for study, is developed in this study. The as‐prepared MnO2 is selective and sensitive for H2O2 oxidation in the presence of O2 and is crucial to the proposed approach. By coupling with a wall‐jet electrochemical cell, the product generated from the reduction reaction at the disk electrode can effectively be monitored at the MnO2‐deposited ring electrode. Model catalysts of nano‐Au and nano‐Pd representing 2e? reduction of O2 to H2O2 and 4e? reduction to H2O, respectively, were evaluated as electrode materials in oxygen reduction reaction to demonstrate the applicability of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号