首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
ZrO2纳米流体的对流换热系数测定及机理浅析   总被引:3,自引:0,他引:3  
建立了测量圆管内纳米流体流动与传热性能的实验系统,测量了不同粒子浓度的ZrO2/水纳米流体在雷诺数为3 000~18 000范围内的管内对流换热系数以及不同位置处纳米流体对流换热系数的变化情况.实验结果显示,在液体中添加纳米粒子显著增大了液体的管内对流换热系数,例如,在相同雷诺数时,与纯水相比,如果纳米粒子的质量浓度从1.6%增大到4.1%,则纳米流体的对流换热系数增加的比例从1.09增大到1.2.此外,从颗粒的浓度、粒径两方面分析纳米流体强化传热的机理.  相似文献   

2.
多孔介质中超临界C O2对流换热数值模拟   总被引:4,自引:2,他引:2  
本文对超临界二氧化碳在多孔结构中的对流换热进行了数值模拟研究.结果表明,超临界条件下二氧化碳剧烈的变物性对多孔介质中的对流换热会产生很大影响;局部热平衡条件下对流换热系数的数值计算值比局部非热平衡条件下的计算结果大;对流换热系数随着颗粒直径的增大而增大.  相似文献   

3.
王平  尹玉真  沈胜强 《物理学报》2014,63(21):214401-214401
利用CFD软件数值研究了颗粒三维有序堆积多孔介质的对流换热问题. 采用颗粒直径分别为14 mm,9.4 mm和7 mm的球形颗粒有序排列构成多孔介质骨架,在多孔骨架的上方有一恒热流密度的铜板. 采用流固耦合的方法研究了槽通道内温度分布和局部对流换热系数的分布以及对流换热的影响因素. 研究结果表明:热渗透的厚度和温度边界层的厚度在流动方向上逐渐增大,并且随流量的增加而减小;当骨架的导热系数比较高时,对流换热随颗粒直径的减小而略有增大;对流换热系数随聚丙烯酰胺溶液浓度的增大而减小,黏性耗散减弱了对流换热. 关键词: 多孔介质 温度场 局部对流换热系数 数值模拟  相似文献   

4.
纳米流体作为一种较高的导热介质,广泛应用于各个传热领域.鉴于纳米颗粒导热系数和成本之间的矛盾,本文提出了一种混合纳米流体.为了研究混合纳米流体颗粒间相互作用机理和自然对流换热特性,在考虑颗粒间相互作用力的基础上,利用多尺度技术推导了纳米流体流场和温度场的格子Boltzmann方程,通过耦合流动和温度场的演化方程,建立了Cu/Al2O3水混合纳米流体的格子Boltzmann模型,研究了混合纳米流体颗粒间的相互作用机理和纳米颗粒在腔体内的分布.发现在颗粒间相互作用力中,布朗力远远大于其他作用力,温差驱动力和布朗力对纳米颗粒的分布影响最大.分析了纳米颗粒组分、瑞利数对自然对流换热的影响,对比了混合纳米流体(Cu/Al2O3-水)与单一金属颗粒纳米流体(Al2O3-水)的自然对流换热特性,发现混合纳米流体具有更强的换热特性.  相似文献   

5.
纳米流体对流换热的实验研究   总被引:15,自引:3,他引:12  
建立了测量纳米流体对流换热系数的实验系统,测量了不同粒子体积份额的水-Cu纳米流体在层流与湍流状态下的管内对流换热系数,实验结果表明,在液体中添加纳米粒子增大了液体的管内对流换热系数,粒子的体积份额是影响纳米流体对流换热系数的因素之一。综合考虑影响纳米流体对流换热的多种因素,提出了计算纳米流体对流换热系数的关联式。  相似文献   

6.
齐聪  何光艳  李意民  何玉荣 《物理学报》2015,64(2):24703-024703
纳米流体作为一种较高的导热介质, 广泛应用于各个传热领域. 鉴于纳米颗粒导热系数和成本之间的矛盾, 本文提出了一种混合纳米流体. 为了研究混合纳米流体颗粒间相互作用机理和自然对流换热特性, 在考虑颗粒间相互作用力的基础上, 利用多尺度技术推导了纳米流体流场和温度场的格子Boltzmann方程, 通过耦合流动和温度场的演化方程, 建立了Cu/Al2O3水混合纳米流体的格子Boltzmann模型, 研究了混合纳米流体颗粒间的相互作用机理和纳米颗粒在腔体内的分布. 发现在颗粒间相互作用力中, 布朗力远远大于其他作用力, 温差驱动力和布朗力对纳米颗粒的分布影响最大. 分析了纳米颗粒组分、瑞利数对自然对流换热的影响, 对比了混合纳米流体(Cu/Al2O3-水)与单一金属颗粒纳米流体(Al2O3-水)的自然对流换热特性, 发现混合纳米流体具有更强的换热特性.  相似文献   

7.
对二维微通道内Al_2O_3-水纳米流体的强制对流换热进行了数值研究。主要研究纳米流体的变热物性参数、纳米粒子体积分数φ和Re数对纳米流体强制对流换热的影响。研究表明:在Re数和纳米颗粒体积分数φ一定时,变热物性参数纳米流体比定热物性参数纳米流体在微通道内的强制对流换热强。在Re数一定时,随着纳米粒子体积分数φ的增加,纳米流体换热性能增强。在纳米粒子体积分数φ一定时,随着Re数的增加,纳米流体的换热能力也随之增加。  相似文献   

8.
小通道扁管内纳米流体流动与传热特性   总被引:2,自引:0,他引:2  
建立了测量小通道扁管内纳米流体流动与对流换热性能的实验系统,测量了不同粒子体积份额的水-Cu纳米 流体的管内对流换热系数和摩擦阻力系数,实验结果表明,在相同雷诺数条件下,小通道扁管内纳米流体的对流换热系数 大于纯液体,且随粒子的体积份额的增加而增大,而纳米流体的阻力系数并未明显增大。  相似文献   

9.
金属泡沫集优良的力学、声学、电磁学和传热学性能于一体,易于集成换热器和散热器。本文基于局部非热平衡模型对纳米流体在金属泡沫内的双强化换热效果进行了数值研究,分析了泡沫形态参数和纳米颗粒浓度对其流动和换热的影响。研究了以水作为基本介质的纳米流体在金属泡沫内流动时的二次项效应、热弥散效应以及局部非热平衡效应,比较了不同模型对强化换热效果的影响。结果表明,换热随孔隙率减小或孔密度增加而逐渐增强,纳米颗粒使流体压降和换热性能都增加;对于含纳米颗粒的水,在金属泡沫内对流换热的惯性效应和热弥散效应在流速较大时更明显;局部非热平衡特性在固体导热系数较大时比较明显。  相似文献   

10.
管内受热气体层流流动热不稳定性理论研究   总被引:3,自引:0,他引:3  
1前言流体的物性参数在温度发生变化时其动力粘性系数、导热系数也要发生变化。这一特性对换热特性可能有较大的影响.现有的换热器中对流换热计算中考虑流体变物性的影响,都是先假设常物性进行计算,然后再按照近似经验公式进行修正*.事实上,由于变物性的影响,流体的对流换热可能会出现新的规律,完全不同于常物性下的情形。对于气体而言,其密度随温度升高而减小,动力粘性系数、导热系数随温度上升而增大,变物性效应将更加明显。这是因为对管内受热气体流动,密度减小、动力粘性系数增大都将导致摩擦损失增加,导致质量流速减小,…  相似文献   

11.
Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil etc. significantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents a systematic literature survey to exploit the characteristics of nanofluids, viz., thermal conductivity, specific heat and other thermal properties. An empirical correlation for the thermal conductivity of Al2O3 + water and Cu + water nanofluids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make fluids embedded with nanomaterials as excellent candidates for future applications.   相似文献   

12.
The Prandtl number, Reynolds number and Nusselt number are functions of thermophysical properties of nanofluids, and these numbers strongly influence the convective heat transfer coefficient. The thermophysical properties vary with volumetric concentration of nanofluids. Therefore, a comprehensive analysis was performed to evaluate the effects on the performance of nanofluids due to variations of density, specific heat, thermal conductivity and viscosity, which are functions of nanoparticle volume concentration. Three metallic oxides, aluminum oxide (Al2O3), copper oxide (CuO), and titanium dioxide (TiO2), dispersed in water as the base fluid were studied. A convenient figure of merit, known as the Mouromtseff number, is used as a base of comparisonfor laminar and turbulent flows. The results indicated that the considered nanofluids can successfully replace water in specific applications for a single-phase forced convection flow in a tube.  相似文献   

13.
This is a numerical investigation of nanoparticle transport effect on magnetohydrodynamic mixed convective heat transfer of electrically conductive nanofluids in micro-annuli with temperature-dependent thermophysical properties. The modified Buongiorno's non-homogeneous model is applied for the nanoparticle-fluid suspension to simulate the migration of nanoparticles into the base fluid, originating from the thermophoresis (nanoparticle migration because of temperature gradient) and Brownian motion (nanoparticle slip velocity because of concentration gradient). Due to surface roughness at the solid–fluid interface in micro-annuli, the wall surfaces are subjected to a linear slip condition to assess the non-equilibrium region near the interface. The fluid flow has been assumed to be fully developed, and the governing equations including continuity, momentum, energy, and nanoparticle transport equation are reduced to a system of ordinary differential equations, before they have been solved numerically. The results are presented with and without considering the dependency of thermophysical properties upon the temperature. It is indicated that ignoring the temperature dependency of thermophysical properties does not significantly affect the flow fields and heat transfer behavior of nanofluids, but it changes the relative magnitudes. Furthermore, in the presence of magnetic field, smaller nanoparticles are more appropriate than larger ones.  相似文献   

14.
15.
Nanoparticles, when homogeneously dispersed in a base fluid, e.g. water, ethylene glycol etc. are commonly known as nanofluids. Nanofluids have gained attention in the scientific community for their enhanced thermal properties. One of the major problems in using nanofluids as a heat transfer medium for commercial applications is that, in most of the closed circuit industrial cooling processes, the cooling fluid has to be replaced after several cycles of cooling operation because of an increased presence of contaminants. If nanofluids were used as a coolant, it would be very hard to separate the nanoparticles from the waste fluid. The present work is aimed at the separation and recycling of nanoparticles from fluid waste by means of quick settling of titanium dioxide nanoparticles using silver nanoparticles along with ultrasonic treatment. It is observed that with increasing silver concentration and time of ultrasonication, the stability of the dispersion decreases. There is a value for both the silver concentration and ultrasonication time above which the settling time decreases drastically.  相似文献   

16.
Nanofluids present a new type of dispersed fluids consisting of a carrier fluid and solid nanoparticles. Unusual properties of nanofluids, particularly high thermal conductivity, make them eminently suitable for many thermophysical applications, e.g., for cooling of equipment, designing of new heat energy transportation and production systems and so on. This requires a systematic study of heat exchange properties of nanofluids. The present paper contains the measurement results for the heat transfer coefficient of the laminar and turbulent flow of nanofluids on the basis of distilled water with silica, alumina and copper oxide particles in a minichannel with circular cross section. The maximum volume concentration of particles did not exceed 2%. The dependence of the heat transfer coefficient on the concentration and size of nanoparticles was studied. It is shown that the use of nanofluids allows a significant increase in the heat transfer coefficient as compared to that for water. However, the obtained result strongly depends on the regime of flow. The excess of the heat transfer coefficient in the laminar flow is only due to an increase in the thermal conductivity coefficient of nanofluid, while in the turbulent flow the obtained effect is due to the ratio between the viscosity and thermal conductivity of nanofluid. The viscosity and thermal conductivity of nanofluids depend on the volume concentration of nanoparticles as well as on their size and material and are not described by classical theories. That is why the literature data are diverse and contradictory; they do not actually take into account the influence of the mentioned factors (size and material of nanoparticles). It has been shown experimentally and by a molecular dynamics method that the nanofluid viscosity increases while the thermal conductivity decreases with the decreasing dispersed particle size. It is found experimentally for the first time that the nanofluid viscosity coefficient depends on the particle material. The higher is the density of particles, the higher is the thermal conductivity coefficient of nanofluid.  相似文献   

17.
The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245–254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the ‘Leong et al.’s dynamic model’. However, the Leong et al.’s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.’s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for various nanoparticle sizes.  相似文献   

18.
Abstract

Fluids in which nanometer-sized solid particles are suspended are called nanofluids. These fluids can be employed to increase the heat transfer rate in various applications. In this study, the convective heat transfer for Cu/water nanofluid through a circular tube was experimentally investigated. The flow was laminar, and constant wall temperature was used as thermal boundary condition. The Nusselt number of nanofluids for different nanoparticle concentrations, as well as various Peclet numbers, was obtained. Also, the rheological properties of the nanofluid for different volume fractions of nanoparticles were measured and compared with theoretical models. The results show that the heat transfer coefficient is enhanced by increasing the nanoparticle concentrations as well as the Peclet number.  相似文献   

19.
Conventional fluids have poor heat transfer properties, but their vast applications in power generation, chemical processes, heating and cooling processes, electronics and other microsized applications make the reprocessing of those thermofluids to have better heat transfer properties quite essential. Recently, it has been shown that the addition of solid nanoparticles to various fluids can increase the thermal conductivity and can influence the viscosity of the suspensions by tens of percent. Thermophysical properties of nanofluids were shown dependent on the particle material, shape, size, concentration, the type of the base fluid, and other additives. In spite of some inconsistency in the reported results and insufficient understanding of the mechanism of the heat transfer in nanofluids, it has been emerged as a promising heat transfer fluid. In the continuation of nanofluids research, the researchers have also tried to use hybrid nanofluid recently, which is engineered by suspending dissimilar nanoparticles either in mixture or composite form. The idea of using hybrid nanofluids is to further improve the heat transfer and pressure drop characteristics by trade-off between advantages and disadvantages of individual suspension, attributed to good aspect ratio, better thermal network and synergistic effect of nanomaterials. As a conclusion, the hybrid nanofluids containing composite nanoparticles yield significant enhancement of thermal conductivity. However, the long-term stability, production process, selection of suitable nanomaterials combination to get synergistic effect and cost of nanofluids may be major challenges behind the practical applications.  相似文献   

20.
M. Mirzaei  A. Azimi 《实验传热》2013,26(2):173-187
In this work, heat transfer and pressure drop characteristics of graphene oxide/water nanofluid flow through a circular tube having a wire coil insert were studied. The required graphene oxide was synthesized via the Hummer method and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (SRD), and scanning electron microscope (SEM) methods. Dispersing graphene oxide in the water, nanofluids with 0.02, 0.07, and 0.12% volume fraction were prepared. An experimental set-up was designed and made to investigate the heat transfer performance and pressure loss of nanofluids. All experiments were carried out in the constant heat flux at tube wall conditions. The volumetric flow rates of the nanofluid were adjusted at 6, 8, and 10 L/min. Thermal conductivity, specific heat, density, and viscosity as thermophysical properties of the nanofluid were calculated using graphene oxide and water properties at the average temperature via appropriate relations. These properties were applied to calculate the convective heat transfer coefficient, Nusselt number, and friction factors for each experiment. Finally, the constant and exponents of Duangthongsuk and Wongwises's correlations for Nusselt number and friction factor were corrected by experimental results. The achieved experimental data have shown good agreement with those predicted. The results have shown that 0.12 vol% of graphene oxide in the water can enhance convective heat transfer coefficient by about 77%. As a result, it can be concluded that the graphene oxide/water can be used in the heat transfer devices to achieve more efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号