首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
小通道扁管内纳米流体流动与传热特性   总被引:2,自引:0,他引:2  
建立了测量小通道扁管内纳米流体流动与对流换热性能的实验系统,测量了不同粒子体积份额的水-Cu纳米 流体的管内对流换热系数和摩擦阻力系数,实验结果表明,在相同雷诺数条件下,小通道扁管内纳米流体的对流换热系数 大于纯液体,且随粒子的体积份额的增加而增大,而纳米流体的阻力系数并未明显增大。  相似文献   

2.
纳米流体对流换热的实验研究   总被引:15,自引:3,他引:12  
建立了测量纳米流体对流换热系数的实验系统,测量了不同粒子体积份额的水-Cu纳米流体在层流与湍流状态下的管内对流换热系数,实验结果表明,在液体中添加纳米粒子增大了液体的管内对流换热系数,粒子的体积份额是影响纳米流体对流换热系数的因素之一。综合考虑影响纳米流体对流换热的多种因素,提出了计算纳米流体对流换热系数的关联式。  相似文献   

3.
测量了水平微细圆管内蒸馏水和不同质量浓度的水基多壁碳纳米管纳米流体在低雷诺数下的强制对流换热特性。实验结果表明,与蒸馏水相比,纳米流体的对流换热系数显著提高,且随质量浓度和管内雷诺数的增大而增大;并且研究了流体管内流动阻力特性,得到的泊肃叶数f·Re值随着雷诺数的变化不明显,但纳米流体的f·Re值要明显小于纯水。  相似文献   

4.
成功建立了流体流动阻力和换热性能测试实验台,在45℃的流体温度下,对不同铜粒子体积分数和基液浓度的纳米流体在湍流状态下的对流换热特性和流动阻力进行了实验测量。实验结果表明:黏弹性流体基液中添加纳米粒子后,在降低对应基液减阻率的同时能明显增强传热性能.例如,将1.0%体积分数的铜纳米粒子添加到质量分数为6×10~(-4)的基液中所形成的黏弹性流体基纳米流体其综合性能指数K=0.47,表现了很好的传热强化和减阻性能.  相似文献   

5.
建立了外径为3 mm的内螺纹管三维实体模型,使用Fluent软件研究了在不同的进口雷诺数和操作压力下超临界二氧化碳在水平内螺纹管内的流动与传热特性。研究表明:不同截面局部换热系数和相同流体局部平均温度下的局部换热系数均随着冷却压力的增大而增大;相同流体局部平均温度下的局部换热系数随着进口雷诺数的增加而增大;不同冷却压力和进口雷诺数下,流体局部平均温度越接近超临界二氧化碳的临界点温度,局部换热系数也就越大。  相似文献   

6.
纳米流体对流换热机理分析   总被引:2,自引:0,他引:2       下载免费PDF全文
肖波齐  范金土  蒋国平  陈玲霞 《物理学报》2012,61(15):154401-154401
考虑在纳米流体中纳米颗粒做布朗运动引起的对流换热, 基于纳米颗粒在纳米流体中遵循分形分布, 本文得到纳米流体对流换热的机理模型. 本解析模型没有增加新的经验常数, 从该模型发现纳米流体池沸腾热流密度是温度、纳米颗粒的平均直径、 纳米颗粒的浓度、纳米颗粒的分形维数、沸腾表面活化穴的分形维数、基本液体的物理特性的函数. 对不同的纳米颗粒浓度和不同的纳米颗粒平均直径与不同的实验数据进行了比较, 模型预测的结果与实验结果相吻合. 所得的解析模型可以更深刻地揭示纳米流体对流换热的物理机理.  相似文献   

7.
本文对超临界二氧化碳在微细管内冷却对流换热进行数值模拟研究,分析不同流动方向和管径大小对超临界二氧化碳对流换热的影响,考察管内局部流体温度、管壁温度以及无量纲温度分布的变化。湍流模型采用低雷诺数YS模型。研究表明,在LPV范围比较大的截面,超临界二氧化碳局部换热系数达到最大值,同时管内传热受流动方向和管径的影响均较大。  相似文献   

8.
本文建立了纳米颗粒/制冷剂工质换热性能实验台,对实验系统进行了检验,并首次进行了纳米颗粒TiO2/HFC134a工质水平管内的单相对流换热实验研究,纳米颗粒的浓度为0.01、0.025和0.05 g/L,并与纯质HFC134a的结果相比较.结果发现:TiO2/HFC134a工质的单相对流换热系数降低,且随着纳米颗粒浓度的增大,降低程度增大.分析原因纳米颗粒在换热表面的沉积是造成这一结果的关键因素.  相似文献   

9.
采用数值模拟的方法研究了不同工质在微通道内流动传热特性的差异。对比了去离子水、纳米流体Al2O3/Water、CuO/Water、TiO2/Water、Cu/Water等工质在微通道内的流动传热特性,并研究了纳米颗粒的浓度对流动换热特性的影响。结果表明:CuO/Water作为冷却工质时的对流换热系数比水增加了9.6%,微通道底面平均温度降低了2.6 K,换热性能明显优于其他几种纳米流体。由于纳米颗粒的加入,纳米流体的粘度比水大,进出口的压降比水大。纳米颗粒的体积分数越大,对流换热系数越大,纳米流体在微通道内的换热性能越好。  相似文献   

10.
对直径为0.531,0.834,1.042和1.931 mm的圆形微通道内液氮的单相流动和传热进行了实验研究.在10,000~90,000的高雷诺数范围内,测量了流动摩擦系数、局部和平均对流换热系数.结果表明,流动摩擦系数随微通道壁面粗糙度的增加而变大.微通道中局部对流换热系数受到液氮导热系数变化的影响沿管程逐渐下降约12.5%.传统的Gnielinski换热关联式经过流动摩擦系数的修正后与实验换热系数符合较好.  相似文献   

11.
A numerical study on natural convective heat transfer inside an enclosure with center heater using nanofluid has been carried out. The effect of different length of center heater on the flow and temperature fields is analysed for different Rayleigh numbers. Results are displayed in terms of streamlines, isotherms, mid height velocity profile and average Nusselt number. The numerical results reveal heat transfer increases with increasing heater length at both vertical and horizontal positions for increasing values of Rayleigh numbers. In particular, a higher increase in heat transfer is obtained with heater situated with vertical position of maximum length. Also it is obtained that enhancement of heat transfer is high for Ag - water nanofluid than CuO -water and Al2O3 -water nanofluids.  相似文献   

12.
齐聪  何光艳  李意民  何玉荣 《物理学报》2015,64(2):24703-024703
纳米流体作为一种较高的导热介质, 广泛应用于各个传热领域. 鉴于纳米颗粒导热系数和成本之间的矛盾, 本文提出了一种混合纳米流体. 为了研究混合纳米流体颗粒间相互作用机理和自然对流换热特性, 在考虑颗粒间相互作用力的基础上, 利用多尺度技术推导了纳米流体流场和温度场的格子Boltzmann方程, 通过耦合流动和温度场的演化方程, 建立了Cu/Al2O3水混合纳米流体的格子Boltzmann模型, 研究了混合纳米流体颗粒间的相互作用机理和纳米颗粒在腔体内的分布. 发现在颗粒间相互作用力中, 布朗力远远大于其他作用力, 温差驱动力和布朗力对纳米颗粒的分布影响最大. 分析了纳米颗粒组分、瑞利数对自然对流换热的影响, 对比了混合纳米流体(Cu/Al2O3-水)与单一金属颗粒纳米流体(Al2O3-水)的自然对流换热特性, 发现混合纳米流体具有更强的换热特性.  相似文献   

13.
The current study was conducted to investigate the convective heat transfer coefficient of a novel TiO2–CNT hybrid nanofluid through the shell-and-tube heat exchanger under a laminar flow and the effects of temperature and mass fraction on it. TiO2–CNT hybrid nanofluids were prepared using a new and modified hydrolysis technique. The thermal conductivity of the TiO2–CNT hybrid nanofluid and other thermo-physical properties were assessed. Results indicate that the effective thermal conductivity and heat transfer coefficient of the base fluid was influenced significantly and increased by the 0.2 wt% of this novel hybrid nanofluid in distilled water.  相似文献   

14.
M. Mirzaei  A. Azimi 《实验传热》2013,26(2):173-187
In this work, heat transfer and pressure drop characteristics of graphene oxide/water nanofluid flow through a circular tube having a wire coil insert were studied. The required graphene oxide was synthesized via the Hummer method and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (SRD), and scanning electron microscope (SEM) methods. Dispersing graphene oxide in the water, nanofluids with 0.02, 0.07, and 0.12% volume fraction were prepared. An experimental set-up was designed and made to investigate the heat transfer performance and pressure loss of nanofluids. All experiments were carried out in the constant heat flux at tube wall conditions. The volumetric flow rates of the nanofluid were adjusted at 6, 8, and 10 L/min. Thermal conductivity, specific heat, density, and viscosity as thermophysical properties of the nanofluid were calculated using graphene oxide and water properties at the average temperature via appropriate relations. These properties were applied to calculate the convective heat transfer coefficient, Nusselt number, and friction factors for each experiment. Finally, the constant and exponents of Duangthongsuk and Wongwises's correlations for Nusselt number and friction factor were corrected by experimental results. The achieved experimental data have shown good agreement with those predicted. The results have shown that 0.12 vol% of graphene oxide in the water can enhance convective heat transfer coefficient by about 77%. As a result, it can be concluded that the graphene oxide/water can be used in the heat transfer devices to achieve more efficiency.  相似文献   

15.
Heat transfer performances of viscoelastic fluid, water-based Cu nanofluid, and viscoelastic-fluid-based Cu nanofluid flows in a circular pipe at a Peclet number of 40,000 were experimentally studied. It indicates that the viscoelastic fluid turbulent flow gives great heat transfer reduction, while the water-based Cu nanofluid flow shows significant heat transfer enhancement. The viscoelastic-fluid-based Cu nanofluid also exhibits heat transfer enhancement as compared with viscoelastic base fluid flow. The effects of nanoparticle volume fraction, mass concentration of viscoelastic base fluid, and temperature on local convective heat transfer coefficient and possible heat transfer enhancement mechanisms of nanofluid flows were discussed.  相似文献   

16.
Laminar convective heat transfer enhancement of cuprous oxide (Cu2O)/water nanofluid flowing through a circular tube was investigated experimentally in the present work. A continuous closed loop was designed to measure heat transfer coefficients and pressure drop associated with the flow of Cu2O/water nanofluid over a wide range of laminar flow conditions. Comparison of the nanofluid experimental results with those of pure water have shown significant enhancement for heat transfer coefficients. On average, a 10% increase in heat transfer coefficient was observed with 16% penalty in pressure drop.  相似文献   

17.
Control volume based finite element method (CVFEM) is applied to simulate H2O based nanofluid radiative and convective heat transfer inside a porous medium. Non-Darcy model is employed for porous media. Influences of Hartmann number, nanofluid volume fraction, radiation parameter, Darcy number, number of undulations and Rayleigh number on nanofluid behavior were demonstrated. Thermal conductivity of nanofluid is estimated by means of previous experimental correlation. Results show that Nusselt number enhances with augment of permeability of porous media. Effect of Hartmann number on rate of heat transfer is opposite of radiation parameter.  相似文献   

18.
采用格子Boltzmann方法研究填充水-氧化铝纳米流体的等腰直角三角形腔体中的自然对流。讨论瑞利数、颗粒体积分数、热源位置等因素对对流换热的影响,以及不同纳米流体模型对模拟结果的影响。结果表明:在低瑞利数下,随着热源在左壁面向上移动,换热效率逐渐增加。而在高瑞利数(Ra=106)时,观察到相反的现象;采用单相纳米流体模型,模拟表明热壁面平均努塞尔数比率随着体积分数的增加近似线性增加。采用改进的纳米流体模型,结果显示平均努塞尔数比率随着体积分数的增加而增大,但是平均努塞尔数比率的变化斜率逐渐减小。改进模型模拟的换热效率比单相模型高,这是因为改进模型考虑了粒子间作用力及换热,更符合实际情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号