首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
本文用数值计算和实验测量结合的实验方法对冷却条件下超临界压力二氧化碳在细圆管内(Din=2 mm)的局部对流换热进行了实验研究.结果表明,冷却条件下超临界二氧化碳局部对流换热系数在流体温度略高于准临界温度时达到峰值.本文还对该过程进行了数值模拟,比较了不同湍流模型的计算结果,根据数值模拟提供的信息分析了影响冷却条件下超临界压力二氧化碳换热的主要因素和物性变化对换热的影响.  相似文献   

2.
建立了内径为2 mm的三叶管三维模型,使用ANSYS Fluent软件对超临界二氧化碳在三叶管内的对流换热特性进行了研究,分析了流动方向、进口雷诺数、壁面热流密度和冷却压力等因素对局部换热系数的影响,结果表明:在本文研究的范围内,流动方向对超临界二氧化碳在三叶管内局部换热系数的影响较小,可以忽略,进口雷诺数、壁面热流密度和冷却压力对局部换热系数的影响较大;二氧化碳进口雷诺数越高,对应的局部对流换热系数也越高,壁面热流密度的大小对局部换热系数出现峰值位置有较大影响,对其大小影响不大;超临界二氧化碳冷却压力越高,对应的局部对流换热系数的峰值也越大;局部对流换热系数峰值所对应的温度只与冷却压力下的临界温度有关。  相似文献   

3.
本文通过对发汗冷却的多孔区域进行二维非热平衡数值模拟,研究了多孔介质区域进口处对流换热系数、冷却剂流量局部降低以及多孔介质受热表面热流密度局部增大对青铜、陶瓷两种不同多孔材料的温度场的影响。计算结果表明,冷却剂在进口处与多孔壁面对流换热系数的增大使多孔介质内部趋向于热平衡;热端壁面对流换热系数、冷却剂流量的局部变化对陶瓷多孔壁面在该局部区域的影响要大于青铜多孔壁面,但青铜多孔壁面受影响的区域更大,而冷却剂流量的局部降低对两种材料固体、流体间温差的影响程度基本一致。  相似文献   

4.
本文对超临界二氧化碳在微细管内冷却对流换热进行数值模拟研究,分析不同流动方向和管径大小对超临界二氧化碳对流换热的影响,考察管内局部流体温度、管壁温度以及无量纲温度分布的变化。湍流模型采用低雷诺数YS模型。研究表明,在LPV范围比较大的截面,超临界二氧化碳局部换热系数达到最大值,同时管内传热受流动方向和管径的影响均较大。  相似文献   

5.
建立了外径为3 mm的内螺纹管三维实体模型,使用Fluent软件研究了在不同的进口雷诺数和操作压力下超临界二氧化碳在水平内螺纹管内的流动与传热特性。研究表明:不同截面局部换热系数和相同流体局部平均温度下的局部换热系数均随着冷却压力的增大而增大;相同流体局部平均温度下的局部换热系数随着进口雷诺数的增加而增大;不同冷却压力和进口雷诺数下,流体局部平均温度越接近超临界二氧化碳的临界点温度,局部换热系数也就越大。  相似文献   

6.
根据边界层理论,对管内变物性湍流强制对流换热控制方程组进行简化;并通过考虑湍流输运中的密度脉动,对传统的混合长度湍流模型进行改进,使之能同时适用于常物性流动和变物性流动.基于该计算模型,对管内超临界压力水湍流对流换热特性进行了数值模拟.计算结果表明,本文的计算模型能正确地反映出超临界工况下的变物性对流换热特征,换热系数...  相似文献   

7.
本文对含有少量润滑油对冷却条件下水平细圆管中超临界压力二氧化碳的对流换热特性进行了实验研究,并与相应不含润滑油的工况及已有经验关联式进行对比。实验结果表明,润滑油会使冷却工况下超临界压力二氧化碳的对流换热恶化,尤其是二氧化碳温度在准临界温度附近时,恶化现象更显著。本文提出了用于计算含润滑油时冷却工况下超临界压力二氧化碳对流换热的经验关联式,其计算结果与90%以上实验数据的偏差在25%以内。  相似文献   

8.
采用SSTk-ω模型对冷却条件下超临界压力CO_2在水平管内的对流换热进行了数值研究,分析了流体物性、热流密度、直径以及浮升力等对其在拟临界点附近的流动换热特性的影响,并从场协同的角度分析了超临界压力CO_2的传热机理。结果表明:浮力效应使流体在流动截面上出现温度场不对称和二次流现象;下壁面的对流换热系数比上壁面先达到峰值,但换热系数小于上壁面;增大热流密度对换热系数的影响较小但能够使换热系数的峰值向入口段移动;增大热流密度和增大直径能够增强浮力效应对流体换热特性的影响;场协同原理可以解释同一截面处的换热不均匀现象。  相似文献   

9.
竖直圆管中超临界压力CO2在低雷诺数下对流换热研究   总被引:2,自引:2,他引:0  
本文对竖直圆管中超临界压力二氧化碳在低雷诺数条件下的对流换热进行了实验研究和数值模拟。实验中分析了不同入口温度、热流密度以及流动方向等对超临界CO2流动和换热的影响。实验结果与计算结果的比较表明:在热流密度较小的情况下实验结果与数值计算结果基本吻合;而在热流密度较大的情况下,由于浮升力的影响,流动可能提前从层流转变为湍流,使换热强化。  相似文献   

10.
王平  尹玉真  沈胜强 《物理学报》2014,63(21):214401-214401
利用CFD软件数值研究了颗粒三维有序堆积多孔介质的对流换热问题. 采用颗粒直径分别为14 mm,9.4 mm和7 mm的球形颗粒有序排列构成多孔介质骨架,在多孔骨架的上方有一恒热流密度的铜板. 采用流固耦合的方法研究了槽通道内温度分布和局部对流换热系数的分布以及对流换热的影响因素. 研究结果表明:热渗透的厚度和温度边界层的厚度在流动方向上逐渐增大,并且随流量的增加而减小;当骨架的导热系数比较高时,对流换热随颗粒直径的减小而略有增大;对流换热系数随聚丙烯酰胺溶液浓度的增大而减小,黏性耗散减弱了对流换热. 关键词: 多孔介质 温度场 局部对流换热系数 数值模拟  相似文献   

11.
本文对超临界压力二氧化碳在烧结多孔介质的竖直圆管中的对流换热进行了实验研究。分析了入口温度超过准临界温度、颗粒直径为0.2-0.28 mm的多孔圆管中,压力、流量、热流密度以及流动方向对超临界二氧化碳对流换热的影响。结果表明,准临界点附近剧烈变物性的影响使得超临界二氧化碳在多孔结构中的对流换热非常复杂。对流换热随着温度远离准临界温度和热流密度的增加不断减弱;流量对对流换热的影响比较复杂。在准临界温度附近,浮升力对换热有一定的影响。  相似文献   

12.
本文对含有金属腐蚀物杂质的亚临界与超临界压力水在竖直加热圆管内的受迫对流与混合对流传热与传质进行了数值模拟,分析了变物性、浮升力以及压力等因素对管内对流传热与传质的影响。结果表明:浮升力使自下而上流过竖直加热圆管的对流传热和传质增强;在不同的温度条件下,超临界压力水的热物性对传热传质的影响有很大不同。  相似文献   

13.
多孔介质中盐指现象的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
罗莹莹  詹杰民  李毓湘 《物理学报》2008,57(4):2306-2313
运用基于杂交网格的高精度数值方法研究了多孔介质中的盐指现象.该算法将基于边界拟合坐标下的高精度有限差分法和高精度的泊松方程快速求解器有效地结合在一起,从而达到提高整体的计算精度、计算效率和稳定性的目的.通过比较不同孔隙率的多孔介质对盐指对流的传热传质效应的影响,发现在标准孔隙率较低的多孔介质中,盐度扩散的速度明显比热扩散的速度快,盐指很快触及上下壁面,使得上下层的盐度梯度迅速减小,这是与非多孔介质具有明显差异之处. 关键词: 多孔介质 双扩散对流 盐指  相似文献   

14.
空气在多孔介质中对流换热的数值模拟   总被引:4,自引:0,他引:4  
本文对空气在多孔结构中的对流换热进行了数值研究.数值模拟与实验的比较表明,对空气在玻璃或轴承钢颗粒多孔结构中的对流换热进行数值模拟时,应采用考虑热弥散效应的局部非热平衡模型.本文还研究了颗粒直径、颗粒导热系数、空气物性随压力的变化及粘性耗散等对换热的影响.  相似文献   

15.
微细板翅与烧结多孔结构中对流换热实验研究   总被引:2,自引:0,他引:2  
本文对水和空气流过4个微细板翅结构和1个烧结多孔结构中的对流换热进行了实验研究,并对其流动与对流换热性能进行了分析和比较。结果表明:在本文实验参数范围内,与空槽道相比,这4种微细板翅结构分别使水的对流换热系数增加10—24倍,分别使空气的对流换热增强了16~40倍;与相同孔隙率的烧结多孔结构相比,微细板翅结构中的流动阻力相近,而对流换热系数却增大。存在最优的微细板翅结构,其换热性能大大强于烧结多孔结构,而流动阻力更小。  相似文献   

16.
流体在烧结多孔槽道中对流换热的实验研究   总被引:5,自引:1,他引:4  
本文对空气和水流过烧结青铜颗粒水平多孔槽道表面上的对流换热进行了实验研究。结果表明:与空槽道表面换热相比,实验段充满烧结多孔介质后,水流过实验段的平均对流换热系数可提高7~9倍,空气可提高3~30倍;烧结多孔结构的强化换热能力大于非烧结的堆积床;直径的增大能提高水在多孔结构内的换热能力,但对空气而言在实验流量范围内无明显作用。  相似文献   

17.
研究沉降分布孔隙率多孔介质流动和传热,根据"O"形圈理论和现场测定确定孔隙率系数,建立坐标方向孔隙率分布函数;考虑流体密度变化,并引入Brinkman-Forchheimer的扩展Darcy模型,能量方程采用界面连续条件,建立沉降分布孔隙率多孔介质流动和传热求解模型.采用差分法对模型进行离散化,应用高斯-赛德尔方法迭代求解.数值分析表明:沉降分布孔隙率条件下多孔介质内流体流动速度在壁面附近较大,中心部位较小,壁面附近孔隙率的增大使得低流速区域减小,较高流速区域增大;当孔隙率小值时,温度按线性减小;当孔隙率大值时,温度在高低温壁面附近迅速减小,在中部减小较缓,热量按导热和对流共同传递;孔隙率增大能使平均怒谢尔数增大,对流换热作用增强.  相似文献   

18.
A detailed numerical modeling is performed to investigate coupled heat transfer of natural convection, radiation and conduction in high-temperature multilayer thermal insulation (MTI), which consists of high-porous, non-gray semitransparent fibrous materials and reflective foils. Radiation within fibers, radiation between fibers and the reflective foils, conduction within fibers and convection from the fibers to the surrounding fluid are considered. Macroscopic (porous media) modeling is used to determine velocity, pressure and temperatures fields for fibrous insulation with a random packing geometry under natural convection, whereas the radiative transfer equation (RTE) is used to solve the radiative heat flux for non-gray materials. Key features of the macroscopic model include two-dimensional effects, non-gray radiative exchange, and the relaxation of the local thermodynamic non-equilibrium (LTNE). This model was validated by comparison with experimental data and it was used to investigate natural convection of coupled heat transfer in multilayer insulation, numerical results showed that natural convection is more likely to occur when the heated/cooled rate is low, while natural convection can be ignored in simulating steady-state coupled heat transfer in MTI.  相似文献   

19.
Some algebraically explicit analytical solutions are derived for the anisotropic Brinkman model―an improved Darcy model―describing the natural convection in porous media. Besides their important theoretical meaning (for example, in analyzing the non-Darcy and anisotropic effects on the convection), such analytical solutions can be the benchmark solutions that can promote the development of computational heat and mass transfer. Some solutions considering the anisotropic effect of permeability have been given previously by the authors, and this paper gives solutions including the anisotropic effect of thermal conductivity and the effect of heat sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号