首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The stereospecific polymerizations of methacrylonitrile with diethylmagnesium were carefully studied by using various ethers as complexing agents. The complexed ethers exhibit a beneficial effect on the stereoregularity of the resulting polymer, namely, the crystallinity increased by using ethers as a complexing agent. The polymerization rate and the molecular weight of the polymer also increased by using ether-complexed catalysts. The polymerization behavior was studied with the dioxane–diethylmagnesium complex as a typical complexed catalyst. The behavior was mostly similar to that of the diethymagnesium alone, that is, the rate of the polymerization increased in proportion to monomer concentration, and the solubility index increased with increasing monomer concentration. Interestingly, the viscosity of the acetone-insoluble fraction increased with increasing monomer concentration, while that of the acetone-soluble fraction was independent of monomer concentration. This is explained by considering that the catalyst has at least two kinds of catalytic species, one being the species that produces the crystalline polymer by a coordinated anionic polymerization, another being the one from which an amorphous polymer is obtained by a conventional anionic mechanism. The fact that the viscosity of the polymer decreased with increasing the initiator concentration is explained in terms of chain trasfer to the initiator. In case of diethylmagnesium alone, the viscosity of the polymer is independent of the initiator concentration.  相似文献   

2.
由稀土羧酸钕盐(Nd)、三异丁基铝(Al)、含氯活化剂(CE)及醇(OH)组成的均相稀土羧酸盐催化体系,用于异戊二烯(Ip)定向聚合,其中含氯活化剂(CE)为氯代烃(CE1)或氯代羧酸酯(CE2).研究了CE和OH的化学结构及Al用量对Ip聚合及聚异戊二烯(PIp)微观结构、分子量及分子量分布的影响,将原位全反射傅立叶红外光谱(in situ ATR-FTIR)技术应用于研究稀土催化Ip配位聚合反应过程及聚合反应动力学,采用FTIR、GPC、NMR及DSC等测试手段表征PIp的微观结构、分子量及其分布、序列分布及热性能.实验结果表明,在稀土催化异戊二烯聚合反应中,少量的CE2和OH有助于提高催化活性、降低分子量分布和提高顺式含量.聚合速率对单体浓度呈现一级动力学关系,表观增长活化能(Ea)为69.5 kJ/mol.通过调节催化剂组分配比及聚合工艺条件,可制备出顺-1,4结构含量可达98%以上、窄分子量分布(Mw/Mn=1.6~2.4)的高顺式聚异戊二烯.  相似文献   

3.
Polymerization of benzyl vinyl ether was carried out by BF3·OEt2, and the effects of polymerization conditions on the stereoregularity of the polymer were studied by NMR analysis. The polymerization at ?78°C in toluene gave a highly isotactic polymer. The isotacticity of the polymer was independent of the catalyst concentration but increased with a decrease in the initial monomer concentration and decreased slightly on raising the reaction temperature. When the polymerizations were carried out in toluene—nitroethane mixtures, a gradual decrease in the isotacticity and a rapid decrease in the molecular weight of the polymer were observed with increasing nitroethane in the solvent. The molecular weight of the polymer was almost constant, regardless of the catalyst concentration, and increased with increasing initial monomer concentration and decreasing polymerization temperature. When the polymerization was performed in toluene at ?78°C with a small amount of water or benzyl alcohol, a linear relationship was found between the reciprocal DP of the polymer and water or benzylalcohol concentration. The mechanisms of the initiation reaction and the stereoregulation in the polymerization were also discussed.  相似文献   

4.
含稀土钛系催化剂的苯乙烯高活性定向聚合研究   总被引:3,自引:1,他引:3  
本文用新研制的含稀土钕化合物的钛系催化剂(SN-1催化剂)于苯乙烯在苯溶液中进行定向聚合,能同时使产率、等规度、催化效率与聚合速率四项指标得到提高并远超过文献值。研究了各种聚合条件,即催化剂浓度、苯乙烯单体浓度、助催化剂三乙基铝浓度和聚合温度各因素对于催化效率、聚苯乙烯产率、等规度和分子量的影响规律并作讨论。  相似文献   

5.
Highly crystalline poly(methyl vinyl ether) (PMVE) was produced in toluene in a temperature range of 0 to ?20°C. with the use of sulfuric acid–aluminum sulfate complex (SA catalyst). It was found from the NMR spectra that these polymers contained more than 50% of the triad isotactic fraction and the melting point of the unfractionated polymer was about 130°C. However, PMVE containing a large amount of the isotactic fraction was insoluble in nitromethane, so the triad tacticity of highly crystalline PMVE could not be quantitatively determined. The molecular weight of PMVE increased with increasing conversion and increasing polymerization temperature. This behavior is different from that in metal halide catalysts. Also, the stereoregularity of PMVE decreased with increasing monomer concentration. However, addition of a polar solvent and increasing the polymerization temperature had little effect on the stereoregularity of the polymer. The increase in the isotactic fraction at high catalyst concentration and the difference in the monomer composition in the copolymerization of methyl vinyl ether with 2-chloroethyl vinyl ether by SA catalyst from that obtained by BF3·O(C2H5)2 suggest that the absorption of MVE on a catalyst surface is an important step in the propagation step by SA catalyst. The fraction of the triad tacticity calculated from the enantiomorphic catalyst sites model8 coincided with the experimental results. This fact shows that the steric structure of the adding monomer is determined only by the nature of the catalyst irrespective of the nature of a growing chain end. It is concluded, on considering also the results of the previous paper, that completely different factors can control the steric structure of a polymer even for the same monomer when different catalysts are used.  相似文献   

6.
This paper reports the study of the dependence of reaction conversion, catalyst activity, polymer microstructure, molecular weight, molecular weight distribution curves and Mooney viscosity on reaction temperature and monomer concentration in the reaction medium used in the synthesis of high cis-polybutadiene. A ternary catalyst system composed by neodymium versatate, trans-butyl chloride and diisobutylaluminum hydride was used in its synthesis. The highest molecular weights were obtained at polymerization temperatures in the range from 70 to 80 °C. The highest content of cis-1,4 repeating units (about 99%) was observed when the polymerization was carried out at the lowest initial monomer concentration (0.56 mol/l).  相似文献   

7.
The present study was aimed at synthesizing and characterizing star copolymers of ??-cyclodextrin and exploring their application as nanocarriers. The copolymers of ??-cyclodextrin and polypropylene oxide were synthesized by using ring opening polymerization, catalyzed by base, under high temperature and pressure. The polymers of different molecular weight were synthesized by increasing chain length of polypropylene oxide at optimized temperature, pressure and concentration of catalyst. The structure of synthesized polymer was confirmed by IR and NMR. Molecular weight and molecular weight distribution was evaluated by hydroxyl number and gel permeation chromatography respectively. Amphiphilic nature of the polymers was evaluated by determining the solubility in water and different organic solvents. For the evaluation of polymer as a nanocarrier, Ibuprofen was selected as model drug. Loading efficiency and release of Ibuprofen from the complex were also investigated. It was observed that, with increase in the molecular weight of the polymers, loading capacity was increased.  相似文献   

8.
合成了Cp TiCl2 N[Si(CH3) 3]2 甲基铝氧烷 (MAO)催化体系 ,以该体系进行丙烯聚合得到无规聚丙烯 ,具有高的分子量及良好的弹性 ,玻璃化温度为 - 8 8℃ .产物经DSC、1 3C NMR、DMA等方法表征 .结果表明 ,催化活性随着丙烯压力的增加 ,有明显的增大 .催化活性在 4 0℃下有最高的催化活性 ,而产物分子量随着温度的下降有明显增大 ,在 0℃~ 5 0℃范围内分子量MW =(2 0~ 6 0 )× 10 4 .  相似文献   

9.
研究了二茂基二价钐配合物(C5H5)2Sm(THF)作为单组分催化剂催化己内脂开环聚合反应,考察了催化剂用量、聚合反应时间、聚合反应温度对己内酯聚合反应的影响。结果表明,配合物(C5H5)2Sm(THF)对己内酯聚合有极高的催化活性且产物的数均分子量较高,当催化剂与单体摩尔比为1:5000时,聚合产率仍可达50.3%,数均分子量可高达32.4万;温度升高,聚合反应的转化率增加,聚合产物数均分子量降低;催化剂用量增加,聚合转化率增加,聚合产物分子量降低;聚合产物的分子量分布较窄;通过凝胶色谱法对聚合产物的分子量及分子量分布进行了表征。  相似文献   

10.
This article describes studies on the variables that regulate the molecular weight in ethylene polymerization using a highly active Ziegler–Natta catalyst with hydrogen for molecular weight control. The dependence of the degree of polymerization on the concentration of catalyst, cocatalyst, monomer, partial pressure of hydrogen, and temperature has been established. The rate constant for chain transfer with cocatalyst has been evaluated. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
有机氨钙催化聚合脂肪族环酯   总被引:3,自引:0,他引:3  
分别用经环氧丙烷和环氧丙烷/乙腈处理的氨钙催化剂催化聚合了ε-己内酯和L-丙交酯.研究了催化剂浓度、聚合时间、真空度、聚合温度和陈化温度等对聚合收率和聚合物粘均分子量的影响.结果表明,有机氨钙催化剂对ε-己内酯和L-丙交酯的开环聚合有较高的催化活性,在较低的温度下和较短的时间内,即可获得较高的转化率和较高的分子量,而且具有一些“准活性聚合”的特点,分子量在一定范围内可控.陈化处理和乙腈的加入可以大大提高聚ε-己内酯的分子量,最大分子量达到27×104.  相似文献   

12.
在Ni(naph)2-AlR3-(BF3·OEt2)催化体系(简称Ni-Al-B)用于丁二烯(Bd)/己烷进行配位聚合体系中引入N,N-二甲基乙醇胺(DMEA)和辛醇(OctOH),研究了DMEA/Ni摩尔比、B/Ni摩尔比和Al/Ni摩尔比对Bd聚合转化率、聚丁二烯(PB)产物的特性黏数、分子量、分子量分布及微观结构的影响,进一步探讨聚合反应动力学.结果表明,在镍系催化丁二烯聚合体系中引入一定量的DMEA和OctOH后,可以提高顺-1,4微观结构含量至97.8%,降低1,2-微观结构含量至约1.3%,提高分子量,使分子量分布变窄,并降低凝胶含量.进一步通过调节B/Ni及Al/Ni摩尔比值,可得到[η]为2.0~4.0dL/g的高顺式PB.聚合速率对单体浓度呈现一级动力学关系,表观增长活化能为43.7kJ·mol-1。  相似文献   

13.
稀土Schiff碱配合物催化烷基异氰酸酯室温聚合   总被引:1,自引:0,他引:1  
利用Schiff碱稀土配合物Ln(H2Salen)2Cl3·2C2H5OH与AI(i—Bu)3组成的催化体系催化烷基异氰酸酯室温聚合,详细考察了催化剂组成以及聚合条件等对烷基异氰酸酯聚合的影响,并研究了己基异氰酸酯的聚合动力学.以La、Nd、Sm和Gd四种稀土元素为代表,合成了相应的Schiff碱配合物,结果表明轻稀土体系比重稀土体系好,La的聚合活性最高.在-40℃-40℃很宽的聚合温度范围内,可以得到分子量分布窄(MWD=1.50~2.40)的高分子量聚异氰酸酯,20℃为最佳的聚合温度.己基异氰酸酯的最佳聚合条件为:[AI]/[La]=30(摩尔比),[n-HexNCO]/[La]=100,[n—HexNCO]=3.43mol/L,甲苯溶液中20℃聚合12h,聚合物收率74.0%,聚合物黏均分子量高达73.5×10^4,数均分子量40.2×10^4,MWD=1.79.聚合动力学研究表明己基异氰酸酯聚合反应对单体浓度和催化剂浓度都是一级关系,聚合反应活化能为43.64kJ/mol.  相似文献   

14.
无乳化剂乳液聚合制备高分子量聚乙烯醇   总被引:1,自引:0,他引:1  
通过无乳化剂乳液聚合方法, 采用氧化还原引发体系制备了超高分子量的聚醋酸乙烯酯(PVAc), 继而醇解为超高分子量的聚乙烯醇(PVA). 研究了聚合温度、引发剂浓度、单体转化率对PVA的分子量和分子结构的影响. 探讨了线性高分子量PVA结构的控制方法. 结果表明, 利用无乳化剂乳液聚合可以实现在室温(14~20 ℃)制备出聚合度为9899的高分子量的PVA, 聚合过程对PVA的分子量和结构均有显著的影响. 在无乳化剂乳液聚合恒速聚合区得到的聚合物分子量较高, 分子量分布窄, 且结构比较规整, 而在加速区, PVAc的支化和交联现象显著, 最终会对PVA的线性程度产生很大影响. 因此, 可以通过聚合过程来控制PVA的分子量和链结构.  相似文献   

15.
赵衡柱  杨青芳  艾莉  马强 《合成化学》2005,13(4):368-371
以辛酸亚锡为催化剂催化丙交酯开环聚合DL-乳酸(PDLLA)。研究了影响PDLLA分子量的因素包括丙交酯单体的纯度、催化剂的浓度、反应温度、反应时间及真空度等。用DSC,TGA分析了不同分子量PDLLA的警警化转变和热失重。结果表明,PDLLA是热不稳定聚合物,残留的单体、催化剂及低聚物是影响PDLLA热稳定性的因素,除去其中残留的单体、催化剂及低聚物可以提高PDLLA的热稳定性。  相似文献   

16.
Manganese complexes with benzonitrile ligands were synthesized, characterized, and applied for the preparation of the isobutylene polymerization. Low and medium molecular weight polyisobutylenes containing high amount of exo‐type double bond end groups (70–80%) were successfully prepared using these manganese(II) complexes as catalysts at room temperature. The influence of monomer and catalyst concentration was intensively analyzed for achieving high monomer conversion and high exo double bond content of the products. Details on end group distribution in the products and development of the exo‐type end group content with reaction time were evaluated by 1H NMR. The catalysts are also active for the homopolymerization of styrene and the copolymerization of isobutylene and styrene. The highly reactive polyisobutylene products obtained by these manganese complexes show features similar to products obtained by conventional cationic polymerization, but the polymerization characteristics clearly deviate. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5636–5648, 2007  相似文献   

17.
An unsymmetrical N-heterocyclic carbene, namely 1-isopropyl-3-benzylimidazol-2-ylidene, is a highly active catalyst for ring-opening polymerization of ?-caprolactone (CL) to give polycaprolactone (PCL) with number average molecular weight (Mn) as high as 2.66 × 104 at 0°C in 100 min in tetrahydrofuran (THF). The effects of monomer/initiator molar ratio ([M]/[I]), catalyst/initiator molar ratio ([C]/[I]), monomer concentration, as well as polymerization temperature and time have been investigated. The kinetic studies of CL polymerization have indicated that the polymerization rate is first-order with respect to both monomer and catalyst concentrations. The apparent activation energy amounts to 56.04 kJ/mol. The proposed mechanism is a monomer-activated process.  相似文献   

18.
A cationic polymerization of formaldehyde which gave a high molecular weight polymer was studied in liquid carbon dioxide at 20–50°C. In the polymerization without any catalyst both the rate of polymerization and the molecular weight of the resulting polymer increased rapidly with a decrease in the loading density of the monomer solution to the reaction vessel, and also increased with an increase in the initial monomer concentration. From these results it was concluded that the initiating species could be ascribed to an impurity contained in the monomer solution. Both the rate of polymerization and the degree of polymerization of the polymer also increased with rising temperature. The carboxylic acid added acted as a catalyst in the polymerization because of increase in the polymer yield, the molecular weight of polymer formed, and the number of moles of polymer chain with increasing dissociation constant of acid used. It was concluded that the polymerization in liquid carbon dioxide proceeded by a cationic mechanism. Methyl formate had no influence on the polymerization, but methanol and water acted as a chain-transfer agent.  相似文献   

19.
Nd—Al双金属活性体对异戊二烯的溶液聚合   总被引:3,自引:0,他引:3  
孙涛  逄束芬 《分子催化》1992,6(1):72-75
近年来,对于稀土Ziegler-Natta催化剂活性体的研究比较活跃。使用催化剂活性体可以消除剩余烷基铝等因素对聚合反应的影响,比以前所用的多组分混合物的催化体系更客观地反映出聚合过程。我们在以前工作的基础上,从体系中分离出Nd-Al双金属活性体,并用于引发异戊二烯溶液聚合,探讨不同聚合条件下异戊二烯溶液聚合的规律,以利于对稀土催化聚合反应的深入了解。  相似文献   

20.
The relationship between stereoregularity and polymerization conditions of α-methylstyrene has been studied by means of NMR spectra. The effects of solvents and various Freidel-Crafts catalysts have been investigated. The stereoregularity of poly-α-methylstyrene increased with increased polymer solubility in the solvent used and with decreasing polymerization temperature. This behavior is completely different from the stereospecific polymerization of vinyl ethers and methyl methacrylate in homogeneous systems. This may be due to the strong steric repulsion exerted by the two substituents in the α-position of α-methylstyrene. For example, with BF3 · O(C2H5)2 as catalyst at ?78°C., atactic polymer is obtained in n-hexane, a nonsolvent for α-methylstyrene, whereas highly stereoregular polymer is produced in toluene or methylene chloride, good solvents for the polymer. However, the polarity of the solvent and the nature of the catalyst hardly affect the stereoregularity of the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号