首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The two rhodium complexes [Rh(acac)(L(R))] (L(R)=(S,S)-5,11,17,23-tetra-tert-butyl-25,27-di(OR)-26,28-bis(1,1'-binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene; 6: R=benzyl, 7: R=fluorenyl), each based on a hemispherical chelator forming a pocket about the metal centre upon chelation, are active in the hydroformylation of 1-octene and styrene. As expected for this family of diphosphanes, both complexes resulted in remarkably high selectivity towards the linear aldehyde in the hydroformylation of 1-octene (l/b≈15 for both complexes). Linear aldehyde selectivity was also observed when using styrene, but surprisingly only 6 displayed a marked preference for the linear product (l/b=12.4 (6) vs. 1.9 (7)). A detailed study of the structure of the complexes under CO or CO/H(2) in toluene was performed by high-pressure NMR (HP NMR) and FT-IR (HP-IR) spectroscopies. The spectroscopic data revealed that treatment of 6 with CO gave [Rh(acac)(CO)(η(1)-L(benzyl))] (8), in which the diphosphite behaves as a unidentate ligand. Subsequent addition of H(2) to the solution resulted in a well-defined chelate complex with the formula [RhH(CO)(2)(L(benzyl))] (9). Unlike 6, treatment of complex 7 with CO only led to ligand dissociation and concomitant formation of [Rh(acac)(CO)(2)], but upon addition of H(2) a chelate complex analogous to 9 was formed quantitatively. In both [RhH(CO)(2)(L(R))] complexes the diphosphite adopts the bis-equatorial coordination mode, a structural feature known to favour the formation of linear aldehydes. As revealed by variable-temperature NMR spectroscopy, these complexes show the typical fluxionality of trigonal bipyramidal [RhH(CO)(2)(diphosphane)] complexes. The lower linear selectivity of 7 versus 6 in the hydroformylation of styrene was assigned to steric effects, due to the pocket in which the catalysis takes place being less adapted to accommodate CO or larger olefins and, therefore, possibly leading to facile ligand decoordination. This interpretation was corroborated by an X-ray structure determination carried out for 7.  相似文献   

2.
Three bidentate phosphoramidite ligands were synthesized, characterized, and employed in Rh-catalyzed hydroformylation of vinyl ethers. The complex Rh(acac)(2,2′-bis{(di[1H-indol-1-yl]phosphanyl)oxy}-1,1′-binaphthalene} (acac = acetylacetone) (Rh- L4 ) was also synthesized and characterized. Rh- L4 showed good regioselectivity for the hydroformylation of vinyl ethers under mild reaction conditions: 2 MPa of syngas, 1:1 (H2/CO) substrate/catalyst molar ratio 1000:1, and 60 °C. The linear selectivity was up to 98%, and in most cases was about 80%, with no hydrogenation product formation observed, which could be a potential way to synthesize 1,3-propanediol. A mechanism study including density functional theory computational analysis showed that both Rh–H and CO insertion steps in the hydroformylation of vinyl ether were linear-preferred in our catalyst system.  相似文献   

3.
Rhodium-catalyzed hydroformylation of 1-octene in the presence of different phosphine and phosphine oxide ligands has been investigated. The molecular structure of new phosphine ligand, fluorenylidine methyl phenyl diphenylphosphine, was determined by single-crystal X-ray crystallography. Parameters such as different ligands, molar ratio of ligand to rhodium complex, ratio of olefin to rhodium complex, pressure of CO : H2 mixture, and time of the reaction were studied. The linear aldehyde was the main product when the phosphine ligands were used as auxiliary ligands while the selectivity was changed to the branched products when the related phosphine oxide ligands were used. Under optimized reaction conditions, in the presence of [Rh(acac)(CO)(Ph3P)]-di(1-naphthyl)phenyl phosphine oxide, conversion of 1-octene reached 97% with 87% selectivity of branched aldehyde.  相似文献   

4.
庚烯羰化制醇的原位红外光谱表征   总被引:1,自引:0,他引:1  
庚烯羰化制醇的原位红外光谱表征1)焦凤英胡庆云陈艳晶(济南大学实验中心济南250002)牛建中殷元骐(中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室兰州730000关键词庚烯均相催化氢甲酰化原位红外光谱铑膦催化剂铑催化剂(以较强碱性的三...  相似文献   

5.
The novel bulky diphosphite (P∩P) ligands ( 3 and 4 ) based on the 2,7,9,9‐tetramethyl‐9H‐xanthene‐4,5‐diol ( 2 ) backbone were investigated in the Rh‐catalyzed hydroformylation of oct‐1‐ene, styrene, and (E)‐oct‐2‐ene. These diphosphites gave rise to very active and selective catalysts for the hydroformylation of oct‐1‐ene to nonanal with average rates>10000 (mol aldehyde)(mol Rh)−1h−1 (P(CO/H2)=20 bar, T=80°, [Rh]=1 mM ) and maximum selectivities of 79% for the linear product. Relatively high selectivities towards the linear aldehyde (up to 70%, linear/branched up to 2.3) but very high activities (up to 39000 (mol aldehyde)(mol Rh)−1h−1) were observed for the hydroformylation of styrene in the presence of these bidentate ligands (P(CO/H2)=2 – 10 bar, T=120°, [Rh]=0.2 mM ). Remarkable activities (up to 980 (mol aldehyde)(mol Rh)−1h−1) were achieved with these diphosphites for the hydroformylation of (E)‐oct‐2‐ene with selectivities for the linear product of 74% (l/b up to 2.8, P(CO/H2)=2 bar, T=120°, [Rh]=1 mM ). A detailed study of the solution structure of the catalyst under catalytic conditions was performed by NMR and high‐pressure FT‐IR. The spectroscopic data revealed that under hydroformylation conditions, the bidentate ligands rapidly formed stable, well‐defined catalysts with the structure [RhH(CO)2(P∩P)]. All the ligands showed a preference for an equatorial‐apical ( ea ) coordination mode in the trigonal bipyramidal Rh‐complexes, indicating that a bis‐equatorial ( ee ) coordination is not a prerequisite for highly selective catalysts.  相似文献   

6.
A highly active and regioselective catalyst obtained from a novel dicationic ligand (1) and Rh(CO)2(acac) for hydroformylation of 1-hexene and 1-octene in ionic liquids is reported. Optimisation studies of various reaction parameters led to an unprecedentedly active (TOFs > 6200 mol mol(-1) h(-1), T= 100 degrees C), selective (l/b ratios > 40) and stable hydroformylation procedure. No catalyst leaching (Rh-loss < 0.07% of initial rhodium intake, P-loss < 0.4% of the initial phosphorus intake) or losses in performance could be measured during 1-octene hydroformylation recycle experiments in 1-butyl-3-methylimidazolium hexafluorophosphate. At low catalyst loadings activities and regioselectivities competitive with one-phase catalysis in conventional solvents were observed. At high catalyst loadings the system is extremely stable and has a long shelf-life as a result of the formation of stable, if inactive rhodium dimers.  相似文献   

7.
The hemispherical diphosphites (R,R)- or (S,S)-5,11,17,23-tetra-tert-butyl-25,27-di(OR)-26,28-bis(1,1'-binaphthyl-2,2'-dioxyphosphanyloxy)calix[4]arene (R=OPr, OCH(2)Ph, OCH(2)-naphtyl, O-fluorenyl; R=H, R'=OPr) (L(R)), all with C(2) symmetry, have been synthesised starting from the appropriate di-O-alkylated calix[4]arene precursor. In the presence of [Rh(acac)(CO)(2)], these ligands straightforwardly provide chelate complexes in which the metal centre sits in a molecular pocket defined by two naphthyl planes related by the C(2) axis and the two apically situated R groups. Hydroformylation of octene with the L(Pr)/Rh system turned out to be highly regioselective, the linear-to-branched (l:b) aldehyde ratio reaching 58:1. The l:b ratio significantly increased when the propyl groups were replaced by -CH(2)Ph (l:b=80) or -CH(2)naphthyl (l:b=100) groups, that is, with substituents able to sterically interact with the apical metal sites, but without inducing an opening of the cleft nesting the catalytic centre. The trend to preferentially form the aldehyde the shape of which fits with the shape of the catalytic pocket was further confirmed in the hydroformylation of styrene, for which, in contrast to catalysis with conventional diphosphanes, the linear aldehyde was the major product (up to ca. 75 % linear aldehyde). In the hydroformylation of trans-2-octene with the L(benzyl)/Rh system, combined isomerisation/hydroformylation led to a remarkably high l:b aldehyde ratios of 25, thus showing that isomerisation is more effective than hydroformylation. Unusually large amounts of linear products were also observed with all the above diphosphites in the tandem hydroformylation/amination of styrene (l:b of ca. 3:1) as well as in the hydroformylation of allyl benzyl ether (l:b ratio up to 20).  相似文献   

8.
Homogeneous catalysis Rh(PPh3)3Cl immobilized on MCM-41 modified with (OEt)3Si(CH2)3PPh2 results in a stable hydrogenation catalyst with turn over frequency (TOF) three times higher than that of Rh(PPh3)3C1 in the hydrogenation of cyclohexene. Leaching of the catalyst is only a minor factor with leaching rate 0.04 % for each cycle. However, immobilization of Rh(PPh3)2(CO)C1 on similar support can only have catalytic hydroformylation properties for the first few cycles. Decay of the catalyst is due to largh leaching rate with totally 22.4 % of Rh leached for the first three cycles.  相似文献   

9.
A thermoregulated phase‐transfer (TRPT) Rh(I) complex catalyst A prepared from Rh(acac)(CO)2 and a thermoregulated ligand CH3(OCH2CH2)mPPh2 (Mw = 918) was applied to the biphasic hydroformylation of 1‐octene, and a high activity with an aldehyde yield of 97.5% was demonstrated. After three recycling steps, the aldehyde yield gradually decreased. Transmission electron microscopy (TEM) revealed that after the first cycle Rh colloids were generated in situ in the aqueous phase, and in subsequent runs Ostwald ripening occurred. An independently prepared colloidal Rh(0) TRPT catalyst D also exhibited high hydroformylation activity under identical experimental conditions, and after two times of recycling an activity decrease was also observed. It is suggested that in situ from Rh(acac)(CO)2 colloidal Rh particles are generated, which demonstrate thermomorphic behaviour and a high hydroformylation activity. Subsequently, agglomeration processes result in an activity decay, as observed in the TRPT Rh(I) complex catalyst system. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
Rhodium catalyzed hydroformylation of a-methylstyrene was investigated in the presence of monodentate phosphine ligands L1–L6. We found that the phosphine with good p-acceptability could efficiently improve the activity of the a-methylstyrene hydroformylation. The big steric hindrance of a-C in a-methylstyrene enhanced the regioselectivity towards the linear aldehyde, which resulted in3-phenylbutanal as the predominant product(99.0%). When tris(N-pyrrolyl)phosphine(L1) modified Rh(acac)(CO)_2was employed as the catalyst, the TOF could reach up to 5786 h~(-1)in the a-methylstyrene hydroformylation at relatively mild conditions(110 8C, 6 MPa).  相似文献   

11.
以硅胶为载体, 采用键合接枝法将2-(二苯膦基)乙基三乙氧基硅烷(DPPES)共价键合于硅胶表面, 制备了性能优良的硅胶键合型膦配体(以SiO2(PPh2)表示). 以SiO2(PPh2)为配体, Rh(acac)(CO)2 (acac:乙酰丙酮)为催化前体, 负载铑膦络合物催化剂(SiO2(PPh2)/Rh)在1-辛烯氢甲酰化反应中原位生成. 对生成的负载型催化剂和硅胶键合型膦配体进行了傅里叶变换红外(FTIR)光谱表征, 考察了膦/铑摩尔浓度比([P]/[Rh])、温度等因素对铑催化的长链1-辛烯氢甲酰化反应的影响. 结果表明, 膦/铑摩尔浓度比的增加能显著提高反应的成醛选择性, 降低铑的流失. 在[P]/[Rh]=12、363 K、2.0 MPa、1.5 h 的温和反应条件下, 1-辛烯转化率和成醛选择性分别可达98.4%和95.3%, 其催化活性与DPPES或三苯基膦(TPP)作配体时的均相铑催化相近. 催化剂循环4 次后, 反应活性无明显下降, 1-辛烯转化率均在97.0%左右, 经电感耦合等离子体原子发射光谱(ICP-AES)检测,有机相中铑流失低于0.1%.  相似文献   

12.
长链烷基二苯基膦—铑配合物催化烯烃氢甲酰化反应研究   总被引:1,自引:0,他引:1  
陈骏如  陈华等 《分子催化》2001,15(6):413-415
研究了烷基二苯基膦-铑配合物RhCl(CO0(n-C8H17PPh2)2(1)和RhCl(Co)(n-C12H25PPh2)2(2)对1-辛烯氢甲酰化反应的催化性能。结果表明,配合物1比2具有更高的催化活性,而配合物2对生成正构醛的选择性更好;当催化剂浓度或膦/铑比增加时,配合物2催化成正构醛的选择性呈下降趋势,显示出与以PPh3为配体时的不同的性能。  相似文献   

13.
The hydroformylation of higher alkenes under aqueous biphasic reaction conditions with a rhodium catalyst derived from BISBIS (sodium salt of sulfonated 2,2′-bis (diphenylphosphinomethyl)-1,1′-biphenyl) in the presence of a polar low boiling point solvent was studied. The addition of ethanol greatly accelerated hydroformylation, such that the turnover frequency (defined as the moles of converted alkene per mole of Rh per hour) and the selectivity for linear aldehyde were up to 2095 h?1 and 99 %, respectively. The catalytic system could be recycled for at least five runs without significant loss of activity in the aqueous biphasic hydroformylation of 1-octene; the rhodium content leaching in product mixtures detected by inductively coupled plasma atomic emission spectroscopy was < 0.1 ppm.  相似文献   

14.
The catalytic performances of four HRh(CO)(PPh3)3-diphosphine (BISBI,BDPX,BDNA and BINAP) systems in 1-dodecene hydroformylation were investigated and compared with HRh(CO)(PPh3)3-PPh3 system.The catalyst system HRb(CO)(PPh3)3-BISBI exhibited very hig regioselectivity for the formation of linear aldehyde.  相似文献   

15.
黄林  郭文硅 《分子催化》1993,7(5):365-376
在常压下,Rh_4(CO)_(12)或Rh_6(CO)_(16)簇合物衍生的Rh/SiO_2对乙烯,丙烯氯甲酰化反应表现出良好的催化活性和选择性,并有利于直线醛的形成.乙烯氢甲酰化体系的表面催化比活性与Rh分散性的关系表明.乙烯氢甲酰化反应具有结构敏感性,而乙烯加氢反应具有结构非敏感性,高分散的金属表面有利于主反应的选择性.通过红外光谱跟踪,发现表面Rh在反应气氛中显示零价.根据接触时间对催化反应的影响,推测多相烯烃氢甲酰化及加氢反应都在Ph~0活性中心上进行.另外,担载羰基铑簇合物的热分解红外研究结果指出,表面羰基化合物金属中心上的配位不饱和性对氢甲酰化催化活性似乎起着重要影响,簇合物只有完全脱羰才能提供高活性的催化中心.在反应气氛和CO气氛中,担载Rh_6(CO)_(16)表现出一致的热稳定性,说明反应气中的CO对稳定羰基物起着主导作用.  相似文献   

16.
Rhodium(II) complexes with dioximes [Rh(Hdmg)2(PPh3)]2 [I] (Hdmg=monoanion of dimethylglyoxime) and [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II] catalyse hydroformylation and hydrogenation reactions of 1-hexene at 1 MPa CO/H2 and 0.5 MPa H2 at 353 K, respectively. Hydroformylation with complex [I] produces 94% of aldehydes (n/iso=2.2) and 6% 2-hexene whereas the second catalyst [II] gives ca. 40% of aldehydes (n/iso=2.1) and 60% of 2-hexene. Corresponding Rh(III) complexes are inactive in hydroformylation except of RhH(Hdmg)2(PPh3) [III], which shows activity similar to [I]. Complexes [Rh(Hdmg)2(PPh3)]2 [I], [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II], RhH(Hdmg)2(PPh3) [III] and [Rh(Hdmg)2(PPh3)2]ClO4 [V] catalyse 1-hexene hydrogenation with an average TON ca. 18 cycles/mol [Rh]×min. Complex [II] has also been found to catalyse hydrogenation of cyclohexene, 1,3-cyclohexadiene and styrene.  相似文献   

17.
The aqueous biphasic hydroformylation of oleyl alcohol was achieved under thermoregulated phase transfer catalysis (TRPTC) conditions with Rh(acac)(CO2) ph2p[p-C6C4(OCH2CH2)25 OH](PETPP) complex catalyst formed in situ,The aldehyde yield reached 81.2% within 6 hrs under 140℃ and 5.0 MPa(CO/H2,1/1) and the separated catalysts dissolved in the aqueous phase could be reused for 3 times without evident changes in activity.  相似文献   

18.
Six calix[4]arenes each bearing two non-cyclic PR2 units attached at distal phenolic oxygen atoms, p-Bu t-calix[4]arene-25,27-(OPR2)2-26,28-(OR')2(R = OPh; R'= Prn, L1; R = OPh; R'= CH2CO2Et, L2; R= OPh; R'= CO2 cholesteryl, L3; R = Ph; R'= Prn, 4; R = Ph; R'= CH2CO2Et, L5; R = Ph; R'= CO2cholesteryl, L6) have been synthesized and their coordinative properties investigated. The diphosphites L1-L3, where the P centres are separated by 12 bonds, readily form chelate complexes provided the complexation reaction is achieved either by using a starting complex that possesses good leaving groups or by operating under high dilution in order to avoid oligomer formation. Thus, the cationic complexes [Rh(COD)L1]BF4 and [Rh(COD)L3]BF4 were both formed in high yield by reacting the appropriate diphosphite with either [Rh(COD)(THF)2]BF4 or [Rh(COD)2]BF4. At high dilution, reaction of L3 with the neutral complex [PdCl2(COD)] afforded the chelate complex [PdCl2L3] in 90% yield. The reaction of one equiv. of L1 with [Rh(acac)(CO)2] resulted in the formation of [Rh(acac)L1] without requiring high dilution conditions. When the latter reaction was carried out with 0.5 equiv. of L1, the bimetallic complex [{Rh(acac)(CO)}2(eta]1-P,eta1-P'-L1)] was formed instead. Reaction at high dilution of with the cyclometallated complex [Pd(o-C6H4CH2NMe2)(THF)2]BF4 gave the expected chelate complex [Pd(o-C6H4CH2NMe2)]BF4. The latter slowly converts in solution to an oligomer in which the ligand behaves as a (eta1-P,eta1-P') bridging ligand, thus leading to a less strained structure. All six ligands, when mixed with [Rh(acac)CO2], effectively catalyse the hydroformylation of octene and styrene. In the hydroformylation of octene, the linear aldehyde selectivities observed with L2 and L3 are significantly higher (linear : branched =ca. 10) than those obtained with the other 4 ligands of this study and also with respect to PPh3. Molecular modelling shows that the lower rim substituents of and form tighter pockets about the metal centre than do the other ligands and so sterically favour the formation of Rh(n-alkyl) intermediates over that of Rh(i-alkyl) ones. In styrene hydroformylation, all ligands result in the formation of unusually high amounts of the linear aldehyde, the b : l ratios being all close to 65 : 35. The highest activities were found when using an L/Rh ratio of 1/1.  相似文献   

19.
The hydroformylation of cyclic dienes in benzene using Rh(CO2Me)(CO)(PPh3)2 as catalyst was studied. The formation of mono- or di-aldehydes was critically dependent on ring size, the smaller cyclic dienes favouring dihydroformylation. Intermediate alkene-aldehydes could be isolated under appropriate conditions, indicating that initial attack on the diene was by hydroformylation. Under hydroformylation conditions, these intermediates underwent either hydroformylation or hydrogenation, depending on the ring size. Linear dienes gave complex mixtures of products.  相似文献   

20.
TiO2 nanotubes supported amorphous Co-B(Co-B/TNTs) catalyst was prepared via impregnationchemical reduction procedure. The catalyst was characterized with transmission electron microscopy(TEM), ammonia temperature-programmed desorption(NH3-TPD), thermogravimetry-differential thermal analysis(TG-DTA), Fourier transform infrared spectroscopy(FTIR) and Raman spectroscopy. The effects of temperature and ratio of CO to H2 on the hydroformylation of 1-octene were studied. At an optimized reaction temperature(150℃) and volume ratio of CO to H2(2:1), the conversion of 1-octene can reach 97.4% with a selectivity of 23.1% for total aldehydes and n/i-aldehyde molar ratio of 40:60. To obtain higher selectivity for linear aldehydes, Co-B/TNTs modified with triphenylphosphine for the hydroformylation of 1-octene were investigated. When molar ratio of P/Co was 4, the yield of total aldehydes was the highest(31.6%) with a good selectivity for linear product(n/i-aldehyde molar ratio was 70:30). In recycle use, the Co-B/TNTs catalyst modified with triphenylphosphine could be reused five times without reducing the activity and selectivity obviously. For a comparative study, all the Co-B/TNTs to catalyze the hydroformylation of other olefins exhibited high conversion under the optimized conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号