首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate time-resolved counting of single atoms extracted from a weakly interacting Bose-Einstein condensate of 87Rb atoms. The atoms are detected with a high-finesse optical cavity and single atom transits are identified. An atom laser beam is formed by continuously output coupling atoms from the Bose-Einstein condensate. We investigate the full counting statistics of this beam and measure its second order correlation function g((2))(tau) in a Hanbury Brown-Twiss type experiment. For the monoenergetic atom laser we observe a constant correlation function g((2))(tau)=1.00 +/- 0.01 and an atom number distribution close to a Poissonian statistics. A pseudothermal atomic beam shows a bunching behavior and a Bose distributed counting statistics.  相似文献   

2.
We report on a slow guided atom laser beam outcoupled from a Bose–Einstein condensate of 87Rb atoms in a hybrid trap. The acceleration of the atom laser beam can be controlled by compensating the gravitational acceleration and we reach residual accelerations as low as 0.0027 g. The outcoupling mechanism allows for the production of a constant flux of 4.5×106 atoms per second and due to transverse guiding we obtain an upper limit for the mean beam width of 4.6 μm. The transverse velocity spread is only 0.2 mm/s and thus an upper limit for the beam quality parameter is M 2=2.5. We demonstrate the potential of the long interrogation times available with this atom laser beam by measuring the trap frequency in a single measurement. The small beam width together with the long evolution and interrogation time makes this atom laser beam a promising tool for continuous interferometric measurements.  相似文献   

3.
Long, narrow all-light atom guide   总被引:5,自引:0,他引:5  
Song Y  Milam D  Hill Iii WT 《Optics letters》1999,24(24):1805-1807
A 1-mm-diameter all-light atom guide capable of transporting ultracold atoms tens of centimeters with high efficiency is described. We made the atom tunnel, a dark hollow beam that is blue detuned from resonance, by passing a few tens of milliwatts of energy from a TEM(00) diode laser beam through an optical sequence composed of three axicons and a simple lens. We demonstrate transport of 10(8)Cs atoms approximately 20 cm with minimal heating. We show that it is possible for one to control the direction and speed of the atoms in the tunnel by varying the detuning of the tunnel beam.  相似文献   

4.
提出了一种产生全光型表面原子(分子)漏斗的新方案.采用红失谐高斯激光束照明由柱面透镜组成的光学系统,可在透镜焦平面附近产生横向漏斗形光强分布,以构成一表面光波导型原子漏斗.计算了漏斗的光强分布及其光学偶极势与偶极力分布.研究结果表明:该原子漏斗可用于冷原子(分子)的表面光波导、分束器和干涉仪以及微阱囚禁的有效装载,因而在集成原子光学及其原子芯片的研究中有着重要的应用. 关键词: 原子漏斗 分子漏斗 光学偶极势 原子芯片  相似文献   

5.
We report on the efficient generation of cold rubidium atoms as a potential coherent atom source for atom lithography. We successfully trapped and cooled 2.6 × 108 atoms in 5 s with a conventional magneto-optical trap simply by enlarging the diameter of the laser beam to 20 mm. The size of the laser-cooled atom cloud was measured to be 10 × 7 × 7 mm3. The number of trapped atoms was approximately 10 times as large as that of previous typical results, while the loading time of atoms remained the same.  相似文献   

6.
Cold atom experiments often use images of the atom clouds as their exclusive source of experimental information. The most commonly used technique is absorption imaging, which provides accurate information about the shapes of the atom clouds, but requires care when seeking the absolute atom number for small atom samples. In this paper, we present an independent, absolute calibration of the atom numbers. We directly compare the atom number detected using dark-ground imaging to the one observed by fluorescence imaging of the same atoms in a magneto-optical trap. We normalise the signal using single-atom resolved fluorescence imaging. In order to be able to image the absorption of the very low atom numbers involved, we use diffractive dark-ground imaging as a novel, ultra-sensitive method of in situ imaging for untrapped atom clouds down to only 100 atoms. We demonstrate that the Doppler shift due to the acceleration of the atoms by the probe beam has to be taken into account when measuring the atom-number.  相似文献   

7.
We introduce a scheme for creating continuous variable entanglement between an atomic beam and an optical field, by using squeezed light to outcouple atoms from a Bose-Einstein condensate via a Raman transition. We model the full multimode dynamics of the atom laser beam and the squeezed optical field and show that, with appropriate two-photon detuning and two-photon Rabi frequency, the transmitted light is entangled in amplitude and phase with the outcoupled atom laser beam. The degree of entanglement is controllable via changes in the two-photon Rabi frequency of the outcoupling process.  相似文献   

8.
We present results of model calculations concerning the fraction of excited atoms obtained by laser irradiation of a fast sodium atom beam (100–400 eV kinetic energy). We calculated relative absorption probabilities as a function of the intersection angle between the two beams, the atom-beam energy, the atom-beam energy spread and the atom-beam divergence. The fraction of excited atoms that can be obtained at 300 eV is at least a factor of 5 smaller than in the case of a thermal beam, due to the divergence and energy spread of the fast atom beam giving rise to a large Doppler broadening.  相似文献   

9.
We dispersively interface an ensemble of 1000 atoms trapped in the evanescent field surrounding a tapered optical nanofiber. This method relies on the azimuthally asymmetric coupling of the ensemble with the evanescent field of an off-resonant probe beam, transmitted through the nanofiber. The resulting birefringence and dispersion are significant; we observe a phase shift per atom of ~1 mrad at a detuning of 6 times the natural linewidth, corresponding to an effective resonant optical density per atom of 0.027. Moreover, we utilize this strong dispersion to nondestructively determine the number of atoms.  相似文献   

10.
We experimentally demonstrate interferometer-type guiding structures for neutral atoms based on dipole potentials created by microfabricated optical systems. As a central element we use an array of atom waveguides being formed by focusing a red-detuned laser beam with an array of cylindrical microlenses. Combining two of these arrays, we realize X-shaped beam splitters and more complex systems like the geometries for Mach-Zehnder and Michelson-type interferometers for atoms.  相似文献   

11.
Atom lithography uses standing wave light fields as arrays of lenses to focus neutral atom beams into line patterns on a substrate. Laser cooled atom beams are commonly used, but an atom beam source with a small opening placed at a large distance from a substrate creates atom beams which are locally geometrically collimated on the substrate. These beams have local offset angles with respect to the substrate. We show that this affects the height, width, shape, and position of the created structures. We find that simulated effects are partially obscured in experiments by substrate-dependent diffusion of atoms, while scattering and interference just above the substrate limit the quality of the standing wave lens. We find that in atom lithography without laser cooling the atom beam source geometry is imaged onto the substrate by the standing wave lens. We therefore propose using structured atom beam sources to image more complex patterns on subwavelength scales in a massively parallel way.  相似文献   

12.
We demonstrate an atom laser using all-optical techniques. A Bose-Einstein condensate of rubidium atoms is created by direct evaporative cooling in a quasistatic dipole trap realized with a single, tightly focused CO2-laser beam. An applied magnetic field gradient allows the formation of the condensate in a field-insensitive m(F)=0 spin projection only, which suppresses fluctuations of the chemical potential from stray magnetic fields. A collimated and monoenergetic beam of atoms is extracted from the Bose-Einstein condensate by continuously lowering the dipole trapping potential in a controlled way to form a novel type of atom laser.  相似文献   

13.
Sources of rare gas atoms in excited metastable states have been used to expose photoresist-coated substrates to demonstrate atom lithography. These thermal atomic beams are usually created by discharge sources that also produce copious amounts of UV radiation. The UV radiation simultaneously illuminates the substrate and may play a complementary role in altering the photoresist together with the metastable atoms. In the experiments reported here, we have isolated the UV component using a magnetic hexapole lens to focus a thermal beam of metastable helium atoms around a fiducial mask that blocks the UV light. This creates an atom lithography exposure that is the result of illumination by the atoms alone. We have also modelled the performance of the magnetic hexapole lens as a potentially useful device for atom lithography. PACS 39.25.+k; 81.16.Nd  相似文献   

14.
任瑞敏  尹亚玲  王志章  郭超修  印建平 《物理学报》2016,65(11):114101-114101
提出了一种采用单模光纤、环形二元相位板和微透镜组成的光束整形系统产生亚微米局域空心光束的方案. 根据瑞利-索莫菲衍射积分公式, 数值计算了微透镜焦平面附近的场分布, 详细研究了空心光束的暗斑尺寸与单模光纤模场半径和微透镜焦距的关系. 数值计算结果表明: 在微透镜焦平面附近光场分布近似对称, 在焦点处场强近似为零, 周围场强逐渐增大, 形成半径约为0.4 μm的三维封闭的球形空心光场区域, 即亚微米局域空心光束. 当局域空心光束为蓝失谐时, 光场中的原子将被囚禁在光场最弱处. 若加上抽运光, 原子将受到蓝失谐局域空心光束与抽运光共同激发的强度梯度Sisyphus冷却. 本文利用该方案产生的亚微米局域空心光束构建单原子的囚禁与冷却器件, 并以单个87Rb原子为例, 利用Mont-Carlo方法研究亚微米局域空心光束中单原子囚禁与强度梯度冷却的动力学过程, 结果表明利用该器件可以获得温度在5.8 μK量级的超冷单原子.  相似文献   

15.
椭圆型激光驻波场作用下Cr原子的汇聚特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张文涛  朱保华  熊显名 《物理学报》2009,58(12):8199-8204
利用近共振激光驻波场操纵中性原子实现纳米级条纹沉积技术是一种新型的研制纳米结构长度标准传递的方法.分析了Cr原子在椭圆型激光驻波场作用下的沉积特性,分别对不同椭圆激光驻波场功率下Cr原子的沉积条纹及不同y平面上沉积条纹特性进行了模拟和分析.同时针对椭圆激光驻波场作用下Cr原子发散角对沉积条纹特性的影响进行了模拟计算,比较了不同发散角条件下沉积条纹的对比度和半高宽. 关键词: 原子光刻 椭圆激光驻波场 Cr原子  相似文献   

16.
We examine the theory of potential scattering of Rydberg atoms in a microwave field. The model of a three-level atom is employed to calculate the radiative force emerging in the resonant coherent interaction with the microwave field for the case of a two-photon resonance and high intensities, using the method of quasienergies of the system consisting of the atom and the field. We determine the probabilities of Landau-Zener transitions in the spatial regions where under two-photon resonance conditions the quasienergies of the atoms approach one another by a small quantity. We also study the dynamics of the variation of the spatial profile of a beam of Rydberg atoms caused by resonant scattering. Finally, we give the results of the first experimental observation of the variation of the transverse beam profile when Rydberg atoms pass through a nonuniform microwave field formed in a rectangular waveguide and in resonance with the two-photon 36P–37P transition. Zh. éksp. Teor. Fiz. 111, 796–815 (March 1997)  相似文献   

17.
We study the resonant interaction of a beam of mono-velocity two-level atoms with a standing-wave light field in the Bragg regime. The atomic beam consists of two different isotopes, and the density is sufficiently small so that at most one atom is inside the cavity at a time. The momentum transfer between the atoms and photons in the process significantly effects the center-of-mass motion of the atoms, thus separating the isotopes in different directions.  相似文献   

18.
We have built an atomic funnel which produces a slow and cold cesium atomic beam. The atomic funnel is based on a pyramidal Magneto Optical Trap (MOT) with a small hole at its apex. Characterization of the funnel operation has been carried out by fluorescence emission and absorption spectroscopy, and optical time of flight (TOF) methods. The atomic beam has a longitudinal velocity in the range 8–12 m/s and a spread less than 1.5 m/s. The transverse temperature is close to the Doppler limit. Typically, an atom flux 4×109 atoms/s is attained. These features, combined with the compactness and simplicity of the experimental arrangement, make this system an ideal source for experiments in atom lithography and atom optics.  相似文献   

19.
杨威  孙大立  周林  王谨  詹明生 《物理学报》2014,63(15):153701-153701
为了制备适于原子干涉仪实验的低温锂原子样品,开展了锂原子的塞曼减速及与磁光阱囚禁相关的实验研究.设计并实现了一种结构紧凑的腔体内冷式多级线圈叠加的塞曼减速器,将速度小于600 m/s的7Li原子减速到60 m/s,磁光阱装载速率为5×108/s,囚禁原子数目1×109个,原子团的最低温度约为220±30μK.研究了光学黏胶中7Li原子的寿命与囚禁光频率失谐量的关系.这些结果为进一步开展7Li原子亚多普勒冷却、光势阱蒸发冷却以及原子干涉仪实验奠定了基础.  相似文献   

20.
We show that a low-finesse cavity can be efficient for detecting neutral atoms. The low finesse can be compensated for by decreasing the mode waist of the cavity. We have used a near-concentric resonator with a beam waist of 12 microm and a finesse of only 1100 to detect magnetically guided Rb atoms with a detection sensitivity of 0.1 atom in the mode volume. For future experiments on single-atom detection and cavity QED applications, it should be beneficial to use miniaturized optical resonators integrated on atom chips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号