首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
侯乃丹  王旋  李玉龙 《爆炸与冲击》2021,41(4):041404-1-041404-13
飞行器高速飞越云雨区时,前表面会受到雨滴的冲击侵蚀。基于一级轻气炮搭建了一种单射流冲击试验平台用于材料雨蚀试验,可产生速度200~600 m/s、直径4~7 mm、头部呈光滑圆弧形的稳定水射流;并对一种碳纤维树脂基复合材料层合板进行了不同速度和直径的单射流冲击试验。结果表明,复合材料单次水射流冲击的典型损伤形貌为:冲击表面凹陷,中心几乎完好无损伤,周围产生一环状损伤带,环内有树脂去除、基体开裂、少量纤维断裂等损伤形式;内部损伤主要由基体开裂和层间分层组成。损伤尺寸呈现典型的各向异性,纵向尺寸大于横向尺寸;随射流速度和直径的增加,表面环状损伤和内部损伤的尺寸均向外扩展,环状损伤面积和内部分层面积也随之增加。水锤压力的压缩和卸载、侧向射流的剪切和应力波的相互作用是造成复合材料单射流冲击损伤的主要机理。  相似文献   

2.
超声场下液体环境中近壁空泡溃灭会产生强烈的微射流,为探究微射流冲击壁面流固耦合效应,利用流体力学及冲击动力学,考虑了率相关的J-C材料本构模型,建立并分析了微射流冲击壁面流固耦合三维模型,并通过超声空化试验和基于球形压痕试验理论的反演分析进行了验证。结果表明:微射流冲击下材料表面出现微型凹坑,凹坑深度由微射流速度和微射流直径共同决定且随其增大而增大,凹坑直径主要与微射流直径正相关,而凹坑径深比则主要与微射流速度负相关;壁面压强基本呈对称分布且最大压强出现在微射流冲击边缘;超声空化试验验证了微射流冲击下材料表面出现的微型凹坑,反演分析方法表明,在16~18的径深比下,微射流冲击强度为420~500 MPa,对应的微射流速度为310~370 m/s。试验及反演分析结果与理论分析结果相符,验证了流固耦合模型及反演分析方法的合理性及准确性,为后续工程应用中空化强度、微射流速度等的控制提供了理论参考。  相似文献   

3.
风沙环境下钢结构涂层的冲蚀磨损力学性能研究   总被引:4,自引:0,他引:4  
针对钢结构涂层耐久性受风沙侵蚀和劣化问题,在研究风沙环境特征和钢结构涂层力学性能的基础上,利用接触理论和LS-DYNA有限元分析程序分析了涂层受冲蚀时的最大接触动力、最大接触半径、最大接触应力,并分析了应力场分布规律和屈服极限风沙流速度。分析结果表明:最大接触动力、最大接触半径、最大法向动应力随冲蚀速度和角度的增加而增大,当冲蚀速度、角度分别为35m/s、90°时,其达到最大值4.09×10-2N、4.24×10-5m、1.08×107Pa;最大切向动应力随冲蚀角度的增加而减小,当冲蚀速度为35m/s 时,冲蚀角度为5°和90°时对应的应力分别为9.36×107Pa 和0;得到了涂层表面和内部应力场,在对称轴0.56z a=处,剪应力最大值0.277 pτ=1max 0,剪应力最大值点即是材料接触流动的起始点,因此可预计塑性流动将在涂层表面下方开始发生;当垂直冲蚀时涂层材料不屈服的极限射流速度为18m/s。  相似文献   

4.
应用界面力学镜像点法及断裂力学理论分析了风沙冲击作用下钢结构表面涂层与基体的界面问题。分析结果表明:冲击角度一定时,界面应力随着冲击速度的增大而增大;冲击速度一定时,界面正应力在冲击点附近较大,在冲击角度为45°时最大;界面切应力在冲击角度为30°时达到最大;冲击角度一定时界面位移随着冲击速度的增大而增大,界面水平位移在冲击角度为30°时最大,冲击速度一定时界面垂直位移随着冲击角度的增大而增大。界面破坏机理是因为界面存在应力集中现象,易发生破坏,切向破坏较为严重。  相似文献   

5.
在应用接触力学分析风沙冲击钢结构表面涂层的动力基础上,应用界面力学镜像点法分析涂层基体界面应力,并计算分析风沙冲击作用下涂层与钢结构界面应力。分析结果表明:界面正应力随着冲击速度的增大而增大,界面正应力在冲击点附近较大,越远离冲击点越小,在冲击点处,界面正应力随着冲击角度的增大而增大,90°时达到最大,当离冲击点有一定距离时,界面正应力在45°时达到最大。界面剪应力也随着冲击速度的增大而增大,且界面剪应力在冲击角度为30°时达到最大值,界面剪应力在离冲击点距离x=1mm的界面处,界面剪应力达到最大值,当x≤1mm时,界面剪应力随着x的增大而增大,当x>1mm时,界面的剪应力随着x的增大而减小。  相似文献   

6.
本文作者制备了等离子沉积Ni-WSe_2-BaF_2·CaF_2-Y-Ag-hBN高温固体自润滑涂层,研究了不同角度金属熔滴Al对该涂层试样表面的粘蚀能力以及在不同温度下的摩擦系数.研究表明:等离子沉积Ni-WSe_2-BaF_2·Ca F_2-Y-AghBN高温固体自润滑涂层在宽温域(30~800℃)的摩擦系数达到0.086~0.299.金属熔滴Al对涂层的粘蚀速度随沉积角度的增加而增加,90°时金属熔滴在涂层与基体表面沉积率最大,此时钢基体的平均沉积率达176.22 mg/(cm~2·s),含hBN的固体自润滑涂层的沉积率为58 mg/(cm~2·s).金属Ni粘蚀物抛磨剥落速率显示,hBN的存在有效降低了金属Al熔滴在涂层表面的粘蚀能力.  相似文献   

7.
基于近场动力学方法,综合分析了破片的速度、层合板的铺层方式、加筋板的筋条尺寸和破片相对筋条的冲击位置对结构损伤模式和破片剩余速度的影响。结果显示:高速破片冲击作用下,层合板会发生侵彻和穿透现象,层合板的损伤模式以基体损伤为主,且随着破片冲击速度的增大,板上下表面的损伤区域呈现出一种先增大后减小的趋势;高速破片冲击作用下,层合的板损伤扩展方向和纤维铺设方向有关,对于纤维铺层方向相同的层合板,其上下表面的损伤扩展方向一般与纤维方向相同;加筋板通过增加少量质量可以获得比层合板更好的抗破片冲击性能,且加筋板的筋条尺寸和破片相对筋条的冲击位置对加筋板的损伤具有明显影响。  相似文献   

8.
动强度和能量耗散规律是研究混凝土动力特性的主要内容。为探究混凝土在冲击荷载作用下的动态力学、变形以及能量演化特征,利用直径为100 mm的霍普金森杆装置对骨料率为0、32%、37%和42%的混凝土试样,分别进行了冲击速度为5、6、7 m/s的冲击压缩试验。探讨了冲击速度和骨料率对试样变形、动强度以及分形维数的影响,建立了动强度关于冲击速度和骨料率的表达式,并对试样吸收能和裂纹表面能之间的关系进行了对比分析。结果表明:混凝土试样破坏时出现了变形滞后现象,破坏形式主要以劈裂拉伸破坏为主;动强度随冲击速度、骨料率的增大而增大,用所建动强度公式可以较好地预估混凝土动强度;混凝土破坏碎块分形维数、吸收能和裂纹表面能均随冲击速度的增大而增大,随骨料率的增大而减小,且吸收能始终高于裂纹表面能,当骨料率为37%时,吸收能转化率最高,约91%转化为裂纹表面能。  相似文献   

9.
为研究聚能金属射流对固体火箭发动机的冲击响应,开展了聚能装药空射实验及某尺寸发动机在无防护情况下的射流冲击实验,使用高速摄影仪记录了爆炸响应过程,并测量了不同距离及方向的空气超压和破片速度。利用AUTODYN有限元计算软件对实验过程进行了数值模拟,通过调整流固耦合的网格大小,避免了耦合泄漏。实验结果表明,火箭发动机受到射流冲击后,会发生剧烈爆炸,推进剂完全反应,破片速度达4 700 m/s以上,距离发动机爆炸中心1 m处的空气超压达到19.78 MPa,爆炸中心温度达到3 000 ℃以上,该推进剂爆炸能量略高于常规炸药。模拟结果显示,射流以头部速度7 000 m/s的速度冲击发动机壳体后,射流头部的尖端被严重烧蚀,且速度降至约5 600 m/s;推进剂在受到射流侵彻1~2 mm后,发生剧烈反应;爆炸冲击波以球形沿圆柱孔装药传播,并通过圆柱形中心孔冲击另一侧推进剂,发生装药的二次冲击起爆,同时伴有回爆现象,在推进剂中心的高斯点出现了3次超压波峰;距离发动机中心1 m处3个高斯点的平均空气压力峰值为18.75 MPa,与实验结果吻合较好。  相似文献   

10.
钻井液中加入体积分数为1%~3%的钢质粒子在钻头喷嘴处高速喷出冲击岩石,实现了粒子射流冲击和钻头机械联合破岩,有效提高了破岩效率。利用瞬态非线性动力学有限元模拟软件,基于光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法,考虑流体对粒子射流冲击的影响,建立了粒子射流冲击破岩的物理模型,获得了粒子射流参数对破岩体积的影响规律,进行了室内实验验证,验证了SPH方法的有效性。结果表明:粒子射流冲击岩石表面形成规则的V型冲击坑;同条件下粒子射流破岩体积是水射流破岩体积的2~4倍;随着粒子射流冲蚀时间的增加,粒子射流破岩体积不断增加,但破岩效率降低;粒子射流压力大于10 MPa后,粒子射流破岩效率迅速增大;喷射角度大于6°后,破岩效率迅速减小。  相似文献   

11.
空蚀坑周围彩虹区的形成机理   总被引:4,自引:1,他引:3  
葛晗?  杜川  陈皓生 《摩擦学学报》2010,30(4):328-332
经过1 min的超声振动空蚀试验后,在不锈钢试样表面形成的空蚀坑周围出现环形彩虹区.表面检测结果表明,该区域经历了高于300℃的高温加热过程.数值计算结果表明在空泡溃灭形成的微射流的高速冲击下,试样表面材料在短时间内发生的塑性变形所释放出的能量是造成材料局部升温的主要原因.在塑性变形相同的情况下,材料的导热系数是影响彩虹环区域大小的关键因素.  相似文献   

12.
选用PolyMaxTM PLA为试样材料,利用3D打印技术制备了弧形折纸薄壁管件。基于准静态轴向压缩实验,运用ABAQUS软件对弧形折纸薄壁管件轴向准静态压缩和冲击行为进行了有限元计算,探讨了其变形模式和能量吸收特性,分析了预折角和薄壁单胞管件阵列数量对其压溃模式及能量吸收的影响。有限元计算结果与实验结果吻合较好。薄壁管件的变形过程可分为4个阶段:初始压溃阶段、预折角塑性旋转阶段、腹板塑性屈曲阶段和完全压溃密实化阶段。弧形折痕的引入能够有效地降低薄壁管件在压缩过程中的初始压溃载荷峰值,减小冲击载荷的振荡幅值。对比了高度相等、质量近似相等的方管与弧形折纸薄壁管在不同冲击速度下的压缩变形与能量吸收。在准静态压缩作用下,对于单胞模型,仅有折痕倾角为70°的模型的比吸能优于方管;对于多胞管件阵列模型,方管的比吸能均优于折纸管。折纸管的压缩力效率和比总体效率均优于方管,其中折痕倾角为50°的模型的压缩力效率和比总体效率最高。在动态冲击压缩下,阵列方管的比吸能均优于阵列折纸管。当冲击速度为10 m/s时,折纸管的压缩力效率和比总体效率均优于方管,其中折痕倾角为50°的模型的压缩力效率和比总体效率最高。当冲击速度为20 m/s时,仅有折痕倾角为50°的模型的压缩力效率和比总体效率优于方管。  相似文献   

13.
运用分子动力学仿真模拟高速磨削下单颗金刚石磨粒切削单晶硅的过程,通过分析切屑、相变、位错运动并结合工件表面积的演变规律研究磨削速度对亚表层损伤和磨削表面完整性的影响.仿真结果显示:磨削速度的增大会加剧磨粒前端材料的堆积,超过200 m/s后增加不再明显.而加工区域的平均温度通过原子之间的挤压和摩擦会不断增大.在磨削温度、磨削力以及粘附效应的相互作用下,摩擦系数先增大后减小.晶格的变形、晶格重构和非晶相变导致切屑形成过程中的磨削力剧烈波动.研究结果表明:在加工脆性材料单晶硅过程中,随着磨削速度的升高亚表层损伤厚度先减小后增大.当磨削速度低于150 m/s时,随着磨削速度的升高,磨粒下方的原子晶格重新排列的时间缩短,非晶结构的产生减少,亚表层损伤厚度减小.当磨削速度超过150 m/s时,加工区域中的高温成为主导因素促进位错的成核、运动致使亚表层损伤厚度增大.  相似文献   

14.
用高速摄像拍摄了90°锥头弹丸低速入水的空泡形态演变过程,全面讨论了不同入水冲击速度下空泡的闭合方式及其演变过程,分析了空泡闭合时间、闭合点水深和弹头空泡长度随入水速度的变化规律以及不同水深位置空泡直径的变化规律;研究了水幕闭合和近液面空泡收缩上升所形成的射流现象及其相互耦合作用过程,探讨了空泡深闭合后其壁面波动规律。结果表明:随着入水速度的增加,空泡分别发生准静态闭合、浅闭合、深闭合和表面闭合,每种闭合方式对应的一个速度区间;弹头产生空泡的临界入水速度为0.657 m/s;不同水深位置的空泡直径呈现非线性变化;随着水深的增加空泡扩张初速增大,空泡最大直径减小,扩张段缩短,收缩段延长;同一时刻水深越大空泡扩张收缩的加速度也越高;水幕闭合后会产生向上和向下两股射流,向下射流速度较大时会对弹丸运动产生影响;近液面空泡收缩上升时会产生强度正比于空泡体积大小和闭合点水深的射流,并与上两股射流相互耦合形成一股更强的向上射流;空泡深闭合后长度缩短和产生的向下射流使弹丸受力发生改变,弹丸速度因受力产生的变化带动了流体质点速度的波动,进而导致空泡壁面发生波动,壁面波动遵循空泡截面独立扩张原理。  相似文献   

15.
选用钴基合金粉末和铁基合金粉末,利用CO2多模激光器对轮轨材料进行激光熔覆处理. 分析了钴基合金涂层和铁基合金涂层的微观组织、成分、硬度与应力状态. 未处理试样表面残余应力为拉应力,激光熔覆处理后,涂层表面残余应力为压应力. 利用MJP-30A滚动接触疲劳试验机对激光熔覆处理前后轮轨试样进行滚动摩擦磨损试验. 结果表明:激光熔覆处理后轮轨试样磨损率明显降低,其中激光熔覆钴基合金后,轮轨试样磨损率分别降低96.7%和98.9%,激光熔覆铁基合金后,轮轨试样磨损率分别降低81.7%和93.5%. 未处理轮轨试样表面损伤为疲劳损伤;钴基合金涂层表面损伤最轻微,磨痕表面光滑,出现轻微的小块剥落;铁基合金涂层表面出现细小裂纹和犁沟.   相似文献   

16.
二维平纹编织C/SiC复合材料的超高速碰撞实验   总被引:1,自引:0,他引:1  
利用电炮加载聚酯薄膜飞片分别对二维平纹编织C/SiC复合材料(2D-C/SiC)和LY12硬铝材料 在3.4~9.5km/s速度下进行碰撞实验。利用光纤位移干涉仪测定了靶材的自由面速度,并对高速撞击碎片 颗粒进行了收集,采用超声波扫描系统无损检测等方法对2D-C/SiC材料在超高速冲击载荷作用下的力学响 应进行了检测。结果表明,随着冲击能量的增大,2D-C/SiC材料板自由面速度逐渐升高,损伤局部且面积逐 渐增大,碎片云团作用区域逐渐变大。与铝板相比,2D-C/SiC材料碎片云团整体能量较小、作用区域较大、能 量面密度较低,是飞行器防护结构设计中一种比较理想的防护材料。  相似文献   

17.
YAG透明陶瓷兼具有优秀的透光性能和抗冲击破坏性能,是武器装备透明部分的优秀防护材料,在军事装备、航天等国防领域具有良好的应用前景。冲击载荷下材料的加载响应特性对掌握材料破坏机制至关重要,能为透明复合靶设计提供依据。为获得YAG透明陶瓷多层复合靶的冲击破坏特性,利用内径9 mm的气体驱动发射平台进行了碳化钨球形破片在20~310 m/s速度下撞击YAG透明陶瓷复合靶的实验,通过高速摄影捕捉的陶瓷表面损伤演化过程,计算了典型径向、环向裂纹扩展速度。通过观测回收的靶体和YAG碎片的宏细观破坏特征,分析了撞击速度与靶体破坏特征之间的联系。结果表明,YAG陶瓷层径向裂纹和环向裂纹扩展速度均随着时间的延长线性降低,且裂纹扩展速度几乎不受撞击速度影响。陶瓷层中心粉碎区面积随撞击速度的提高而增大,且中间玻璃层破坏区域面积与陶瓷锥底面积相关联,陶瓷锥角与撞击速度关联性不强。同时,观察到陶瓷层在冲击破坏过程中出现了裂纹簇,获得了裂纹簇数量与破片撞击速度之间的关系,分析了裂纹簇的特征及其成因。裂纹变向、应力波作用会显著影响细观断面破坏特征。径向、环向和锥裂纹中沿晶断裂的比例均随着裂纹扩展距离的增大而增加,且穿晶比例随着撞击速度的提高而增加。  相似文献   

18.
海上作战时,近场水下爆炸形成的水射流能造成水面舰船结构的严重局部毁伤。为了研究近场爆炸时舰船底部水射流的形成机理及规律,开展了TNT当量2.5 g的炸药在固支方板底部不同爆距下起爆的水下爆炸实验。结果表明,气泡坍塌形成水射流的过程随着爆距的增加由吸附式向非吸附式转化。接着,基于ABAQUS软件采用CEL方法开展了系列数值模拟,结果表明:爆距在0.821~0.867倍最大气泡半径时,存在吸附式射流向非吸附式射流转化的临界点;固支方板加快了气泡坍塌的进程,炸药与钢板间的距离越小则射流形成的时间越早;射流形成过程中最大速度和射流击中钢板时速度均随着爆距的增大先增大后减小,并在临界点附近达到最大值,射流速度最大可达621 m/s,射流击中钢板时速度最大可达269 m/s。最后,给出了射流开始形成时间、射流最大速度、射流最大速度出现时间、射流击中钢板速度和射流击中钢板时间与距离参数的函数关系式。  相似文献   

19.
研究了几种等离子喷涂陶瓷(Al_2O_3、Al_2O_3-TiO_2、Cr_2O_3和ZrO_2)涂层的固体粒子冲蚀磨损特性及其冲蚀磨损机理,同时根据冲蚀磨损表面形貌特征的扫描电子显微镜观察,并且从准静态压印断裂分析入手,提出了这类陶瓷涂层在固体粒子于较低速度和较小角度冲击下的冲蚀磨损数学模型(试验选用的粒子冲击速度有30m/s和70m/s的两种,冲击角度为30°).研究结果表明,固体粒子冲击压印断裂-层状剥落是这类陶瓷涂层的主要冲蚀磨损机理。根据所提出的模型得到涂层的体积冲蚀磨损率Ev与其硬度HV呈反比关系(即Ev∝HV-1),这与试验结果相符;由该模型推导出涂层的Ev之速度指数n=2.1,这与试验结果基本相符。按照这种模型,对于固体粒子以较低速度和较小角度冲击的情况,高硬度的陶瓷涂层具有较高的冲蚀磨损抗力;通过改善陶瓷涂层的断裂韧性,可以有效地提高其在正向冲击时的冲蚀磨损抗力。  相似文献   

20.
刹车速度对C/C复合材料制动摩擦性能的影响   总被引:14,自引:3,他引:11  
在MM-1000型摩擦磨损试验上考察了碳布叠层结构的C/C复合材料在不同速度下的制动摩擦磨损行为,并用扫描电子显微镜观察分析了试样磨损表面形貌,结果表明:随着刹车速度的增大,摩擦系数增大,在20-25m/s速度范围出现峰值;当刹车速度增大至28-30m/s时,摩擦系数仍保持较高,体现了优良的高能摩擦特性;磨损量在低速时较小,当刹车速度大于15m/s,磨损量迅速增大,低速时磨损表面由一层薄的磨屑层所覆盖,当速度大于15m/s,大量的磨屑形成一层较厚的磨屑层,高速时由于剧烈的氧化和剪切作用,很多基质碳被氧化剥落,炭纤维被磨断、拔出,使磨损增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号