首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
力学   10篇
物理学   1篇
  2024年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   5篇
  2018年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
基于冷轧成型工艺,采用不同的轧制道次制备Al/Ni多层复合材料。开展了Al/Ni多层复合材料准静态压缩和准密闭二次撞击反应实验,对它的力学性能和冲击释能特性进行测试。同时,通过扫描电镜得到了材料的细观结构特性,分析了Al/Ni多层复合材料细观特性对宏观力/化学行为的影响机制。结果表明,基于冷轧技术制备的Al/Ni多层复合材料比粉末压制而成的Al/Ni复合材料塑性更强,材料的抗压强度总体随冷轧次数的增加呈上升趋势。另外,冷轧3~5道次的Al/Ni多层复合材料的准密闭二次撞击反应实验表明,材料在相同的撞击速度(800~1 500 m/s)下释放的化学能随着轧制道次的增加而逐渐降低。  相似文献   
2.
为了研究钇铝石榴石(yttrium aluminum garnet, YAG)透明陶瓷及玻璃材料的抗弹性能和冲击破坏机制,开展了12.7 mm穿甲燃烧弹侵彻YAG透明陶瓷/玻璃的剩余侵彻深度实验研究。基于变形侵彻和刚性侵彻机制建立理论模型分析子弹撞击YAG透明陶瓷和玻璃的作用过程,并利用空腔膨胀模型确定了剩余弹体对2024T351航空铝的剩余侵彻深度。实验结果表明:YAG透明陶瓷对子弹有较强的破碎作用,其防护能力显著高于玻璃材料。理论模型计算得到的剩余弹体质量和侵彻深度结果与实验结果吻合较好,可见本文建立的理论模型可用于评估不同面板材料的抗弹性能。  相似文献   
3.
YAG透明陶瓷兼具有优秀的透光性能和抗冲击破坏性能,是武器装备透明部分的优秀防护材料,在军事装备、航天等国防领域具有良好的应用前景。冲击载荷下材料的加载响应特性对掌握材料破坏机制至关重要,能为透明复合靶设计提供依据。为获得YAG透明陶瓷多层复合靶的冲击破坏特性,利用内径9 mm的气体驱动发射平台进行了碳化钨球形破片在20~310 m/s速度下撞击YAG透明陶瓷复合靶的实验,通过高速摄影捕捉的陶瓷表面损伤演化过程,计算了典型径向、环向裂纹扩展速度。通过观测回收的靶体和YAG碎片的宏细观破坏特征,分析了撞击速度与靶体破坏特征之间的联系。结果表明,YAG陶瓷层径向裂纹和环向裂纹扩展速度均随着时间的延长线性降低,且裂纹扩展速度几乎不受撞击速度影响。陶瓷层中心粉碎区面积随撞击速度的提高而增大,且中间玻璃层破坏区域面积与陶瓷锥底面积相关联,陶瓷锥角与撞击速度关联性不强。同时,观察到陶瓷层在冲击破坏过程中出现了裂纹簇,获得了裂纹簇数量与破片撞击速度之间的关系,分析了裂纹簇的特征及其成因。裂纹变向、应力波作用会显著影响细观断面破坏特征。径向、环向和锥裂纹中沿晶断裂的比例均随着裂纹扩展距离的增大而增加,且穿晶比例随着撞击速度的提高而增加。  相似文献   
4.
界面击溃/驻留效应可以有效提高装甲陶瓷的抗侵彻能力。为研究长杆弹撞击装甲陶瓷界面击溃及侵彻特性,开展了长杆弹撞击装甲陶瓷实验研究。同时,基于裂纹扩展理论建立了考虑界面击溃/驻留效应的长杆弹侵彻装甲陶瓷计算模型,以定量描述界面击溃/驻留效应对装甲陶瓷抗侵彻性能的影响。不同弹靶条件下的界面击溃/侵彻转变速度、界面驻留时间、侵彻速度与侵彻深度的理论计算值与实验结果具有较好的一致性,表明计算模型可靠。在此基础上,分析了弹体及陶瓷材料对界面击溃/驻留及侵彻过程的影响规律。研究结果表明:随着弹体撞击速度的提高,陶瓷表面由界面击溃向侵彻转变。考虑界面击溃/驻留效应的长杆弹侵彻装甲陶瓷理论模型,可以较好地反映不同弹体撞击速度对应的弹靶作用模式。弹体材料的屈服强度和密度越高,界面驻留时间越短,弹体侵彻靶体的能力越强;陶瓷的屈服强度越高,界面击溃/驻留效应越显著,靶体的抗侵彻能力越强。考虑界面击溃/驻留效应的长杆弹侵彻装甲陶瓷理论模型揭示了部分界面击溃作用机理,可为陶瓷复合靶的设计提供参考。  相似文献   
5.
为了研究不同微结构陶瓷材料的冲击破坏特征,以从微结构角度出发、描述陶瓷材料非弹性变形和断裂行为的Deshpande-Evan模型为基础构建本构模型,计算了无约束条件下材料的应力状态。为了验证改进模型的有效性,将VUMAT子程序编程方法将与ABAQUS有限元软件相结合,并将其应用于典型陶瓷材料(YAG透明陶瓷)冲击破坏过程的分析模拟。采用改进模型分析应变率、应力三轴度、晶粒尺寸及初始缺陷分布密度对YAG透明陶瓷动态力学行为和损伤演化机制的影响规律。结果表明:随着晶粒尺寸和裂纹分布密度的增加,YAG透明陶瓷破坏程度随之加剧,完全损伤区域面积也随之增加,晶粒尺寸对YAG透明陶瓷宏观破坏特征的影响程度要大于裂纹分布密度;YAG透明陶瓷失效强度以及断裂应变随着晶粒尺寸以及初始缺陷分布密度的增大而减小;随着应变率不断增加,YAG透明陶瓷在不同晶粒尺寸以及初始缺陷分布密度下的峰值应力和断裂应变均随之增加;裂纹扩展速度会随着晶粒尺寸的增加呈现出先增加而后平缓的趋势,裂纹扩展速度与初始缺陷分布密度系数成线性关系。改进模型可以描述YAG透明陶瓷微结构对其宏观破坏特征的影响,为进一步分析微结构对陶瓷材料宏观...  相似文献   
6.
界面击溃效应(interface defeat)是射弹撞击陶瓷材料过程中,陶瓷表面产生的特有现象.国内外学者在近30年来对陶瓷界面击溃效应开展的大量研究工作表明界面击溃效应中射弹界面驻留(dwell)时间的增加以及界面击溃/侵彻转变速度的升高能够大量消耗弹体动能、有效提高装甲陶瓷的抗弹性能.本文主要从实验、理论和数值模拟三方面介绍国内外学者开展的工作,包括陶瓷界面击溃效应的宏观与微观力学机制及其研究方法等.针对现今对界面击溃效应研究的不足,提出了关于未来研究方向的建议.  相似文献   
7.
界面击溃效应(interface defeat)是射弹撞击陶瓷材料过程中,陶瓷表面产生的特有现象.国内外学者在近30年来对陶瓷界面击溃效应开展的大量研究工作表明界面击溃效应中射弹界面驻留(dwell)时间的增加以及界面击溃/侵彻转变速度的升高能够大量消耗弹体动能、有效提高装甲陶瓷的抗弹性能.本文主要从实验、理论和数值模拟三方面介绍国内外学者开展的工作,包括陶瓷界面击溃效应的宏观与微观力学机制的研究方法等.针对现今对界面击溃效应研究的不足,提出了关于未来研究方向的建议.  相似文献   
8.
相较于传统透明材料,相同面密度下透明陶瓷具有更优异的抗冲击性能,使其成为极具应用前景的透明装甲防护材料。研究透明陶瓷在冲击下的破坏响应及损伤演化规律,对透明陶瓷装甲的结构设计及防护能力的提高起到至关重要的作用。为了比较传统透明材料与典型透明陶瓷材料在冲击过程中的破坏特性差异,利用9 mm弹道枪发射平台进行了浮法玻璃、YAG透明陶瓷及镁铝尖晶石透明陶瓷3种透明材料的边缘冲击试验,破片发射速度为200~300 m/s。通过高速摄影捕捉破片的撞击过程,分析了粉碎区及主裂纹扩展距离随时间的变化规律。结果表明,3种材料在不同速度破片的冲击作用下,粉碎区面积与材料强度呈负相关性。对同种材料,在200~300 m/s速度范围内,破片撞击速度对主裂纹的扩展速度没有影响。同时比较了玻璃与透明陶瓷在宏观尺度上的损伤演化特征差异:玻璃在粉碎区两侧产生三角形的次裂纹区域,陶瓷材料则会产生细长的次裂纹簇,并会产生较明显的裂纹“分叉”现象。利用扫描电子显微镜对回收到的陶瓷碎片进行观测,并分析了2种透明陶瓷材料在细观尺度破坏特征的异同。2种透明陶瓷的径向裂纹断面上会出现从沿晶断裂到穿晶断裂的过渡变化,而环向断裂面上几乎都是沿晶和穿晶混合断裂。2种透明陶瓷中,仅YAG透明陶瓷在沿晶断裂时会出现晶体“剥落”现象。  相似文献   
9.
谈梦婷  张先锋  包阔  伍杨  吴雪 《力学进展》2019,49(1):201905
界面击溃效应(interface defeat)是射弹撞击陶瓷材料过程中,陶瓷表面产生的特有现象.国内外学者在近30年来对陶瓷界面击溃效应开展的大量研究工作表明界面击溃效应中射弹界面驻留(dwell)时间的增加以及界面击溃/侵彻转变速度的升高能够大量消耗弹体动能、有效提高装甲陶瓷的抗弹性能.本文主要从实验、理论和数值模拟三方面介绍国内外学者开展的工作,包括陶瓷界面击溃效应的宏观与微观力学机制及其研究方法等.针对现今对界面击溃效应研究的不足, 提出了关于未来研究方向的建议.   相似文献   
10.
为研究预应力陶瓷的抗侵彻性能,利用AUTODYN仿真软件模拟了对SiC陶瓷施加预应力的过程,并开展了长杆弹以不同速度侵彻预应力陶瓷的数值仿真研究,确定了预应力陶瓷的抗侵彻性能。通过对比分析,得到了不同载荷下陶瓷内部的应力分布状态,以及陶瓷抗侵彻性能与预应力的关系。结果表明:对陶瓷施加预应力可以有效提高其抗侵彻能力;但随着加载预应力的进一步提高,即当陶瓷中心部位预应力大于112MPa时,陶瓷的抗侵彻能力反而下降,陶瓷加载的预应力与其抗侵彻性能之间存在最佳匹配关系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号