首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种新型THz显微探测技术   总被引:1,自引:0,他引:1       下载免费PDF全文
由于太赫兹(THz)电磁辐射的波长较长,探测的空间分辨率受到衍射极限的限制.设计了一种 新型的THz显微探测技术,使探测晶体紧贴在薄产生晶体上,激发光采用紧聚焦的方式不但 把空间分辨率提高到光学量级,还克服了典型近场探测方法中存在的低通光量、高通滤波的 缺点.详细介绍了这一新型探测器件的基本结构和显著的探测特性. 关键词: THz 近场 聚焦  相似文献   

2.
Tip-enhanced near-field fluorescence and topography characterization of a single nanometre fluorophore is conducted by using an apertureless scanning near-field microscopy system. A fluorophore with size 80hm is mapped with a spatial resolution of 10hm. The corresponding near-field fluorescence data shows significant signal enhancement due to the apertureless tip-enhanced effect. With the nanometre spatial resolution capability and nanometre local tip-enhanced effect, the apertureless tip-enhanced scanning near-field microscopy may be further used to characterize a single molecule by realizing the local near-field spectrum assignment corresponding to topography at nanometre scale.  相似文献   

3.
O'Hara J  Grischkowsky D 《Optics letters》2001,26(23):1918-1920
We demonstrate quasi-optical, diffraction-limited two-dimensional image production by means of reflected pulses of terahertz (THz) radiation. A spherical mirror is used to form a real one-to-one THz image of two 1-mm-diameter steel spheres, which is then scanned over a THz receiver. Diffraction-limited spatial (cross-range) resolution and THz pulse range resolution are simultaneously observed.  相似文献   

4.
Recent advances in terahertz imaging   总被引:10,自引:0,他引:10  
We review recent progress in the field of terahertz “T-ray” imaging. This relatively new imaging technique, based on terahertz time-domain spectroscopy, has the potential to be the first portable far-infrared imaging spectrometer. We give several examples which illustrate the possible applications of this technology, using both the amplitude and phase information contained in the THz waveforms. We describe the latest results in tomographic imaging, in which waveforms reflected from an object can be used to form a three-dimensional representation. Advanced signal processing tools are exploited for the purposes of extracting tomographic results, including spectroscopic information about each reflecting layer of a sample. We also describe the application of optical near-field techniques to the THz imaging system. Substantial improvements in the spatial resolution are demonstrated. Received: 29 January 1999 / Published online: 7 April 1999  相似文献   

5.
We present our experimental studies on the effects of the pumping sizes on THz radiation based on ultrashort light pulse optical rectification for high spatial resolution T-Ray imaging. Our experiments show that high spatial resolution T-ray imaging requires both thin THz emitter and sample, and rigorous tolerance of the gap between the sample and the emitter, as well as small pumping size which usually much smaller compared with THz wavelength. Such a small pumping size results in dramatic decrease of the THz wave power, which originates from strong diffraction of THz wave, the depolarization of the focused tightly pumping beam, the spatial filtering of the emitter exit-surface, and the strong phase-mismatching between the pumping and the high spatial Fourier components of the THz signal, rather than two-photon absorption.  相似文献   

6.
A technique of enhancing and broadening terahertz (THz) wave radiation from large aperture photoconductive (PC) antenna is presented in this paper. In this technique, the PC antenna is excited by both the optical and previously generated THz pulses by a laser-induced air plasma created in front of PC antenna and an enhanced and broadened THz wave signal is obtained. The theoretical and experimental investigation shows that the superposition is the main mechanism for this enhancement. The technique shown in this paper can be very useful for THz imaging and spectroscopy.  相似文献   

7.
The structure of our material world is characterized by a large hierarchy of length scales that determines material properties and functions. Increasing spatial resolution in optical imaging and spectroscopy has been a long standing desire, to provide access, in particular, to mesoscopic phenomena associated with phase separation, order, and intrinsic and extrinsic structural inhomogeneities. A general concept for the combination of optical spectroscopy with scanning probe microscopy emerged recently, extending the spatial resolution of optical imaging far beyond the diffraction limit. The optical antenna properties of a scanning probe tip and the local near-field coupling between its apex and a sample provide few-nanometer optical spatial resolution. With imaging mechanisms largely independent of wavelength, this concept is compatible with essentially any form of optical spectroscopy, including nonlinear and ultrafast techniques, over a wide frequency range from the terahertz to the extreme ultraviolet. The past 10 years have seen a rapid development of this nano-optical imaging technique, known as tip-enhanced or scattering-scanning near-field optical microscopy (s-SNOM). Its applicability has been demonstrated for the nano-scale investigation of a wide range of materials including biomolecular, polymer, plasmonic, semiconductor, and dielectric systems.

We provide a general review of the development, fundamental imaging mechanisms, and different implementations of s-SNOM, and discuss its potential for providing nanoscale spectroscopic including femtosecond spatio-temporal information. We discuss possible near-field spectroscopic implementations, with contrast based on the metallic infrared Drude response, nano-scale impedance, infrared and Raman vibrational spectroscopy, phonon Raman nano-crystallography, and nonlinear optics to identify nanoscale phase separation (PS), strain, and ferroic order. With regard to applications, we focus on correlated and low-dimensional materials as examples that benefit, in particular, from the unique applicability of s-SNOM under variable and cryogenic temperatures, nearly arbitrary atmospheric conditions, controlled sample strain, and large electric and magnetic fields and currents. For example, in transition metal oxides, topological insulators, and graphene, unusual electronic, optical, magnetic, or mechanical properties emerge, such as colossal magneto-resistance (CMR), metal–insulator transitions (MITs), high-T C superconductivity, multiferroicity, and plasmon and phonon polaritons, with associated rich phase diagrams that are typically very sensitive to the above conditions. The interaction of charge, spin, orbital, and lattice degrees of freedom in correlated electron materials leads to frustration and degenerate ground states, with spatial PS over many orders of length scale. We discuss how the optical near-field response in s-SNOM allows for the systematic real space probing of multiple order parameters simultaneously under a wide range of internal and external stimuli (strain, magnetic field, photo-doping, etc.) by coupling directly to electronic, spin, phonon, optical, and polariton resonances in materials. In conclusion, we provide a perspective on the future extension of s-SNOM for multi-modal imaging with simultaneous nanometer spatial and femtosecond temporal resolution.  相似文献   

8.
A terahertz (THz) quasi-near-field real-time imaging system is presented. Not only the consumption of experimental time is dramatically reduced, but also the resolution of the imaging system is improved to the magnitude of sub-wavelength of THz waves. THz images of a razor blade edge are obtained and the spatial resolution of the imaging system is discussed in detail. For checking the imaging capability of this system, three metallic plates with different sub-wavelength air hole arrays are imaged and the microstructure of these samples can be clearly observed in their THz images. It is believed that the THz quasi-near-field real-time imaging system should have tremendous applications in the THz microscopic field.  相似文献   

9.
GaAs光电导天线辐射太赫兹波功率的计算   总被引:1,自引:0,他引:1       下载免费PDF全文
贾婉丽  施卫  屈光辉  孙小芳 《物理学报》2008,57(9):5425-5428
在Larmor公式的基础上建立了适合计算光电导天线辐射太赫兹波功率的数学模型,利用此数学模型通过蒙特卡罗方法分别计算了不同实验条件下GaAs光电导天线辐射太赫兹电磁波功率.计算结果表明,增加光电导天线的偏置电场或触发光能量,都能够提高天线辐射太赫兹波功率,大孔径光电导天线能够承载更多的光生载流子,因而可以产生比小孔径光电导天线功率更高的太赫兹波. 关键词: 光电导天线 Larmor公式 太赫兹波功率  相似文献   

10.
A method to measure the refractive index for high reflectance materials in the terahertz range with terahertz time domain reflection spectroscopy is proposed. In this method, the THz waveforms reflected by a silicon wafer and high reflectance sample are measured respectively. The refractive index of the silicon wafer, measured with the THz time domain transmission spectroscopy, is used as a reference in the THz time domain reflective spectroscopy. Therefore, the complex refractive index of the sample can be obtained by resorting to the known reflective index of the silicon and the Fresnel law. To improve the accuracy of the phase shift, the Kramers-Kronig transform is adopted. This method is also verified by the index of the silicon in THz reflection spectroscopy. The bulk metal plates have been taken as the sample, and the experimentally obtained metallic refractive indexes are compared with the simple Drude model.  相似文献   

11.
为了提高场效应晶体管太赫兹探测器的响应度并降低噪声等效功率,需要对探测器集成平面天线的结构进行合理设计与优化,本文对集成平面天线结构的场效应晶体管太赫兹探测器的研究进行了深入调研。首先,对场效应晶体管太赫兹探测器的工作原理进行了分析,介绍了集成平面天线如何解决耦合太赫兹波效率低的问题。然后,介绍了一些常用的平面天线结构,包括偶极子天线、贴片天线、缝隙天线、grating-gate和其他类型的结构,比较了各种天线的性能以及引入后对太赫兹探测器响应度的影响。通过对比不同天线结构的探测器响应度和噪声等效功率等参数指标,发现:采用平面天线结构之后,场效应晶体管太赫兹探测器的响应度有了大幅度的提升,各种类型的天线对探测器响应度都有不同程度的提升。本文着重介绍了几种集成于场效应晶体管的平面天线结构,包括各种天线的性能和研究进展,最后分析了场效应晶体管太赫兹探测器存在的问题和发展趋势。  相似文献   

12.
Development of terahertz wave microscopes   总被引:3,自引:0,他引:3  
Terahertz (THz) radiation has tremendous potential for inspection applications. However, due to the diffraction restriction, its spatial resolution is limited by its long wavelength. Near-field technology improves the spatial resolution of THz imaging. Recent developments of near-field THz wave microscopes are highlighted.  相似文献   

13.
Room-temperature operation terahertz (THz) wave source is demonstrated using three MgO:LiNbO3 crystals which have a noncollinear arrangement. The experimental results show that the THz wave can be tunable from 0.8 THz to 3.0 THz, and the peak energy output is 103 pJ/pulse at 1.5 THz. The noncoilinear cavity configuration makes the THz beam have Gaussian-like spatial distribution, small divergence angle, perpendicularly eradiated from the crystal surface. The beam quality factor M2 is measured to be Mx^2 = 1.15, Mx^2 = 1.25 for characterizing the THz wave beam. Experiments also show that the THz beam can be focused by using a polyethylene lens, and the focal spot size is close to the diffraction limit.  相似文献   

14.
The generation of terahertz (THz) transients in photoconductive emitters has been studied by varying the spatial extent and density of the optically excited photocarriers in asymmetrically excited, biased low-temperature-grown GaAs antenna structures. We find a pronounced dependence of the THz pulse intensity and broadband (>6.0 THz) spectral distribution on the pump excitation density and simulate this with a three-dimensional carrier dynamics model. We attribute the observed variation in THz emission to changes in the strength of the screening field.  相似文献   

15.
A compact planar antenna sources with on-chip fabrication and high directivity in order to achieve large depth-of-field for better image resolution is the prospective demand for THz imaging application. Therefore, the small-gap photoconductive dipole antennas have been explored to fulfil such applications demand. However, there are certain modalities for improving the photoconductive dipole antenna performance which need to identify to accomplish high THz average radiated power and improved total efficiency. The unit-cell small-gap photoconductive dipole antenna radiation power enhancement methods need to optimize the design parameters with photoconductive material selection from theoretical simulation. Further, the potential improvement of coupling efficiency of THz wave with air as well as femto-second laser incident efficiency is also important parameters to enhance the radiation power of small-gap photoconductive dipole antenna. In this paper, we have presented an analytical procedure employing explicit mathematical expression leading to the physical behaviour of small-gap photoconductive dipole antenna. The effects of biased lines on the antenna performance parameters are discussed with the help of proposed equivalent circuit model. We have explored the effect of gap-size on the THz radiated power and on total radiation efficiency from the proposed photoconductive dipole antennas.  相似文献   

16.
High-resolution continuous-wave terahertz (CW THz) real-time imaging operating at 2.52 THz is demonstrated based on THz digital holographic technique. To eliminate the influence of zero-order diffraction while reducing the recording distance, effective zero-order diffraction suppression methods are studied and compared. The spatial resolution of the imaging system is tested by imaging a self-made Siemens star. When the recording distance is 2.1 cm, the measured resolution can reach 0.245 mm. The experimental results confirm the high imaging performance of the THz digital holography system.  相似文献   

17.
小波变换在太赫兹三维成像探测内部缺陷中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
代冰  王朋  周宇  游承武  胡江胜  杨振刚  王可嘉  刘劲松 《物理学报》2017,66(8):88701-088701
采用Syn View Head 300对内部有胶和空气孔的样件进行了太赫兹二维扫描(xy轴方向),系统通过线性调频连续波技术得到样件内部的三维信息.检测薄层时,由于太赫兹源的波长在亚毫米量级,薄层的上下表面反射峰相距太近而难以辨别.为了提高太赫兹探测的纵向分辨率,采用小波变换对探测信号进行处理,对小波系数进行三维重构,获得的三维小波系数图像比原始三维探测信号更加精确.该方法有效提高了太赫兹成像的纵向检测精度,纵向分辨率可达1 mm.  相似文献   

18.
太赫兹时域光谱技术(THz-TDS)广泛应用于材料、生物医学、化学、药学、安检等诸多领域。传统扫描式THz-TDS技术需要通过改变探测光延时逐点扫描并重构时域信号,仅适合于具有较高重复频率且稳定的太赫兹辐射源情形下的样品探测。在低重复频率或涨落较大的太赫兹辐射源情形下和不可逆过程中样品的探测,扫描式THz-TDS不再适用,需要使用单发THz-TDS技术,单发THz-TDS技术原则上仅需要一个激光脉冲就可以获取一个完整的太赫兹时域脉冲波形。介绍几种主要的单发THz-TDS探测技术,这些技术都利用了电光晶体的泡克尔斯效应,通过测量探测光的某个物理量的变化来提取太赫兹信号。根据探测方法不同可分为光谱编码、空间编码和互相关等技术。在光谱编码技术中,探测光不同频率成分在时间上发生分离,不同时间成分分别被太赫兹脉冲不同时刻电场调制,通过测量探测光各个频率被太赫兹脉冲调制前后的光谱的变化提取太赫兹脉冲波形。该方法光路简单,测量结果直观,有较高的信噪比,但其时间分辨率较低,且被测太赫兹信号容易产生失真。为提高被测信号的时间分辨率,有人提出了空间编码技术,即不同位置探测光分别被太赫兹脉冲不同时刻电场调制,通过测量探测光各个位置太赫兹脉冲调制前后的光强变化提取太赫兹脉冲波形。根据不同空间展开方法可分为一维空间编码技术和二维空间编码技术。空间编码技术中虽然有较高的时间分辨率,但由于探测光在空间展开能量分散使得其信噪比相对较低。此外,还有一种较高时间分辨率的技术即互相关技术,可分为共线互相关和非共线互相关技术。在非共线互相关技术中,被太赫兹脉冲调制的激光啁啾脉冲与短脉冲互相关作用产生二次谐波,通过太赫兹脉冲调制前后二次谐波空间分布变化来提取太赫兹信号;在共线互相关技术中被太赫兹脉冲调制的啁啾脉冲与短脉冲共线入射到光谱仪,通过干涉条纹提取太赫兹信号,该技术提高了时间分辨率和信噪比,但光路布置复杂,不能进行实时监测。回顾了这几种单发THz-TDS探测技术的发展历程,综述探测技术的原理、实验方案和测量结果,并讨论了这些探测技术的优势和不足。  相似文献   

19.
太赫兹(THz)波在物质检测方面发挥着巨大的作用,是一种非常有潜力的生化传感工具。但是传统的太赫兹时域光谱系统(TDS)结构复杂,系统的集成度低,占用空间较大。所以,如何对THz波进行有效引导、实现集成化传输并得到高质量光谱就成为太赫兹光谱系统的研究热点。太赫兹片上系统是将THz的产生、传输以及探测都集成到同一芯片上,然后通过相干探测的方法获得THz时域光谱。它可以实现对多种样品的检测,尤其在对难于取样的微量样品探测方面具有广泛的应用价值。它无需光路准直,操作简便,成品率高。两个研究工作都是基于低温砷化镓(LT-GaAs)外延片开展的。首先将一根直径为200 μm的铜线固定在LT-GaAs外延片的上方,通过真空蒸镀的方法制备出天线电极,同时得到天线间隙,研制出基于LT-GaAs外延片的THz天线。利用波长为800 nm的飞秒激光对其进行测试,得到了质量较高的THz信号,验证了天线的实用性。然后在另一外延片上利用光刻微加工工艺制作出传输线和微电极,得到了集成的THz片上系统。使用波长为1 550 nm的飞秒激光分别激发片上系统的太赫兹产生天线和探测天线,天线产生的太赫兹波在传输线上传播,在探测端同样得到了质量较高的THz时域信号,证实了THz片上系统的可行性。该方法省去了腐蚀牺牲层以及LT-GaAs薄膜的转移、键合等步骤,极大地提高了片上系统的成品率,避免了薄膜转移过程中易破碎及腐蚀液存在毒性的问题。最后,研究了外加电压对从片上系统中获得的THz波性能的影响,结果为电压越高,THz波的信号强度越强;另外,通过在传输线上方垂直放置铜箔的方法验证了THz波沿着传输线传播的事实。该研究中采用的基于LT-GaAs外延片的片上系统的制备方法简单,制作周期短,制作过程安全,应用领域广泛,这为将来与微流控芯片相结合实现对液体样品的探测打下了基础。  相似文献   

20.
We present a polarization-controlled terahertz (THz) wave spectroscopic imaging modality to investigate the anisotropy of the detected materials. The polarization of the emitted THz wave is controlled by changing the relative phase between the fundamental and second-harmonic waves in the two-color laser-induced air plasma THz generation configuration. The THz wave polarization direction is extracted by measuring the two electric field amplitudes when the polarization of the incident wave is controlled to be horizontal and vertical. The anisotropy of the industrial Sprayed-On-Foam-Insulation (SOFI) is characterized by measuring its azimuthal angle dependent THz polarization response. This work demonstrates that THz wave polarization-controlled imaging technique can be used for highly sensitive industrial nondestructive inspection and biological related characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号