首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate high-resolution fluorescence imaging of single molecules using near-field scanning optical microscopy (NSOM) with a tiny aperture probe for two different wavelengths in visible range in the illumination mode of operation. The spatial resolutions obtained at both excitation wavelengths were almost the same and the highest resolution realized was about 10 nm. To discuss the achievable resolution in aperture NSOM, we also employed a computer simulation by the finite-difference time-domain method for various aperture sizes and wavelengths. The resolution of 10 nm is predicted to be contributed by the single peak of localized near-field light around the rim of the aperture.  相似文献   

2.
J.M. Kim  T. Ohtani 《Surface science》2004,549(3):273-280
High-resolution single molecular near-field fluorescence images were observed by scanning near-field optical/atomic force microscopy (SNOM/AFM). We modified the SNOM/AFM for both high-resolution fluorescence imaging and high-resolution topographic imaging. The imaged fluorophore, Alexa 532, is prepared with a poly-methyl-methacrylate (PMMA) film coating. A fluorescence resolution of 25 nm was obtained with a simultaneous topographic image of a flat surface. A sample prepared with a lower PMMA concentration exhibited a rough surface in the micro area. The results for the flat surface indicated that the fluorescence resolution is worst in the rough surface sample, that the maximum fluorescence intensities for the individual fluorophore are similar, and that the decay rate is faster. Thus, we concluded that the morphological effect is an important factor in fluorescence image resolution and the apparent lifetimes of the fluorescence molecules.  相似文献   

3.
单壁碳纳米管束针尖增强近场拉曼光谱探测实验研究   总被引:2,自引:0,他引:2  
针尖增强近场拉曼光谱术是最近发展起来的光谱技术.金属探针在获得样品纳米局域表面形貌的同时,受激光激发,在针尖附近产生增强电磁场,得到与形貌位置精确对应的针尖增强局域拉曼光谱,形貌和光谱的结合实现了纳米局域的光谱指认.文章建立了一套针尖增强近场拉曼光谱测龋装置,并用此装置对电弧法合成的单壁碳纳米管进行了近场拉曼光谱探测.测量了直径为100 nm单壁碳纳米管束的针尖增强拉曼光谱,进一步得到至多3根单壁碳纳米管的近场拉曼光谱,实现了超衍射分辨光谱探测.通过与远场拉曼光谱比较发现,针尖增强近场拉曼光谱的增强因子大于230倍.实验证明,同时具有超衍射空间分辨和拉曼光谱信号增强能力的针尖增强近场拉曼光谱术将是纳米材料和纳米结构表征的一种重要方法.  相似文献   

4.
We investigate the local optical response of split-ring resonator-(SRR)-based metamaterials with an apertureless scanning near-field optical microscope. By mapping the near fields of suitably resonant micrometer-sized SRRs in the near-infrared spectral region with an uncoated silicon tip, we obtain a spatial resolution of better than lambda/50. The experimental results confirm numerical predictions of the near-field excitations of SRRs. Combining experimental near-field optical studies with near- and far-field optical simulations provides a detailed understanding of resonance mechanisms in subwavelength structures and will facilitate an efficient approach to improved designs.  相似文献   

5.
Bridger PM  McGill TC 《Optics letters》1999,24(15):1005-1007
We examine fundamental issues related to discriminating structural and optical features in near-field scanning apertureless microscopy. We report a series of controlled experiments with nanosphere-sized standard spheres in which we observed significant differences in resolution and structure between an atomic-force microscope image and a simultaneously acquired near-field optical (NFO) image. Further, in experiments that employed a mix of dyed and undyed nanospheres we found that we can observe differences in the same NFO image for adjacent nanospheres. Therefore we conclude that near-field scanning apertureless microscopy not only meets the criteria for a NFO image but also is capable of measuring optical properties below the diffraction limit. The two-point resolution was at least 200 nm when we were detecting optical phase and 50 nm when we were detecting optical intensity. The edge response was typically 15 nm, and the minimum observable features were of the order of 3 nm.  相似文献   

6.
We consider apertureless near-field optics that provides subwavelength resolution. We study the enhancement of the electromagnetic field near nanospheres and under the tip of a scanning probe microscope using the finite difference time-domain (FDTD) method. We discuss the mechanisms of field enhancement connected with the system geometry (“lightning rod effect”) and resonance excitation of local plasmon eigenmodes for different materials of the tip and various geometrical parameters of the system. We describe the possible applications in nano-optics and nanotechnology. We present the experimental achievements in apertureless near-field nanolithography.  相似文献   

7.
A scanning near-field optical microscope (SNOM)—based modification of the method to study the dynamics of single molecule receptor—ligand interactions exploiting the fluorescence imaging by total internal reflection fluorescence microscopy is introduced. The main advantage of this approach consists in the possibility to study the single molecule interaction dynamics with a subwavelength spatial resolution and a submillisecond time resolution. Additionally, due to the much smaller irradiation area and some other technical features, such a modification enables to enlarge the scope of the receptor—ligand pairs to be investigated and to improve the temporal resolution. We briefly discuss corresponding experimental set up with a special accent on the SNOM operation in liquid and present some preliminary results of related investigations.  相似文献   

8.
We demonstrate apertureless near-field microscopy of single molecules at sub-10 nm resolution. With a novel phase filter, near-field images of single organic fluorophores were obtained with approximately sixfold improvement in the signal-to-noise ratio. The improvement allowed pairs of molecules separated by approximately 15 nm to be reliably and repeatedly resolved, thus demonstrating the first true Rayleigh resolution test for near-field images of single molecules. The potential of this technique for biological applications was demonstrated with an experiment that measured the helical rise of A-form DNA.  相似文献   

9.
We propose a method for high-sensitivity subwavelength spectromicroscopy based on the usage of a spaser (plasmonic nanolaser) in the form of a scanning probe microscope tip. The high spatial resolution is defined by plasmon localization at the tip, as is the case for apertureless scanning near-field optical microscopy. In contrast to the latter method, we suggest using radiationless plasmon pumping with quantum dots instead of irradiation with an external laser beam. Due to absorption at the transition frequencies of neighboring nano-objects (molecules or clusters), dips appear in the plasmon generation spectrum. The highest sensitivity is achieved near the generation threshold.  相似文献   

10.
反射式无孔径近场Raman研究(英文)   总被引:1,自引:0,他引:1  
近场扫描光学显微技术与Raman光谱技术的结合能够在纳米尺度下提供化学 /结构信息 ,这对很多应用都是至关重要的 ,比如硅器件 ,纳米器件 ,量子点及生物样品单分子研究。本文报导了采用无孔径探针的近场Raman研究。我们的系统有两大特征 :1 近场Raman的增强是通过金属探针上的银镀层实现的 ,无需样品准备 ;2 系统在反射模式下工作 ,适用于任何样品。这两点对实际应用是至关重要的。我们首次在实际硅器件上用 1秒积分时间获得了 1维近场Raman映射和 2维近场Raman图象。我们首次展示了由于积分时间短 ,该技术可用于成象用途。因此 ,这是近场扫描Raman研究中的一次巨大进步。此外 ,我们系统中采用的金属探针可同时用于AFM及电学特性成象 ,比如电阻 ,电容 ,这些是器件应用中的重要参数。  相似文献   

11.
We use the couple dipole method to investigate the scanning near-field optical microscopy metallic tip-nanoparticle near-field interaction. Dependences of the local field intensity inside the nanoparticle on the nanosized tip shape,the tip open angle and the illumination angle are revealed. In combination with the previous results, we establish a complete model to understand the tip-nanoparticle near-field coupling mechanism.  相似文献   

12.
We report on near-field scanning optical microscopy measurements on randomly textured ZnO thin films. These films are commonly used as transparent conducting oxide in thin-film solar cells. Textured interfaces are used to increase the scattering of light, which leads to a better light trapping in the solar cell. Here, both the topography and the local transmission are measured with a tapered fiber tip with very high spatial resolution. By varying the distance of the tip and the wavelength of the incident light, the optical profile is visualized and reveals a strong confinement of light on a subwavelength scale which corresponds to ridges in the surface structure. The confinement of light results from guided optical modes in the ZnO which are accompanied by a modulated evanescent field in air. No corresponding structure to this modulation is found in the topography. These results give new insight for further improvement of light trapping in solar cells.  相似文献   

13.
A theory is presented for the polar near-field magneto-optical Kerr effect in scattering of light from a linear nanoprobe. In the framework of Green’s function technique, a solution is obtained for the problem of near-field magneto-optics and apertureless scanning microscopy of lateral magnetic inhomogeneities (domains) with nanometer scale. The probe in the form of a nanowire and the sample with a near-surface magnetic nanolayer are considered to support surface plasmons. Electromagnetic coupling between a nanow-ire and a sample surface (polarizability of the complex “probe plus image charges”) is taken into account self-consistently. Magneto-induced polarization of an ultrathin near-surface layer is treated within linear approximation in magnetization which is perpendicular to the layer. The polarization, spectral and angular characteristics of light scattering modulated by magnetization and resonantly enhanced by surface plasmons are examined. Dependence of the near-field magneto-optical response on the probe-domain distance along the sample surface is obtained. The resolution power of scanning near-field microscopy is estimated and the factors to influence it are pointed out.  相似文献   

14.
We investigate the effectiveness of differential detection, which is a combination of probe-dithering and synchronous detection, in discriminating near-field light interaction from background light interaction in apertureless near-field optical microscopy (NSOM). The lateral differential NSOM with a photocantilever is more effective than the vertical differential detection, which does not always provide sufficient discrimination. The V-dithering-based lateral differential detection provides apertureless NSOM that can image the optical coupling between sample and probe dipoles, which is an interaction through near-field light.This paper was originally presented at the 5th International Conference on NEAR FIELD OPTICS and RELATED TECHNOLOGIES (NFO-5), which was held on December 6–10, 1998 at Coganoi Bay Hotel, Shirahama, Japan, in cooperation with the Japan Society of Applied Physics and Mombusho Grant-in Aid for Scientific Research on Priority Areas “Near-field Nano-optics” Project, sponsored by Japan Society for the Promotion of Science.  相似文献   

15.
The structure of our material world is characterized by a large hierarchy of length scales that determines material properties and functions. Increasing spatial resolution in optical imaging and spectroscopy has been a long standing desire, to provide access, in particular, to mesoscopic phenomena associated with phase separation, order, and intrinsic and extrinsic structural inhomogeneities. A general concept for the combination of optical spectroscopy with scanning probe microscopy emerged recently, extending the spatial resolution of optical imaging far beyond the diffraction limit. The optical antenna properties of a scanning probe tip and the local near-field coupling between its apex and a sample provide few-nanometer optical spatial resolution. With imaging mechanisms largely independent of wavelength, this concept is compatible with essentially any form of optical spectroscopy, including nonlinear and ultrafast techniques, over a wide frequency range from the terahertz to the extreme ultraviolet. The past 10 years have seen a rapid development of this nano-optical imaging technique, known as tip-enhanced or scattering-scanning near-field optical microscopy (s-SNOM). Its applicability has been demonstrated for the nano-scale investigation of a wide range of materials including biomolecular, polymer, plasmonic, semiconductor, and dielectric systems.

We provide a general review of the development, fundamental imaging mechanisms, and different implementations of s-SNOM, and discuss its potential for providing nanoscale spectroscopic including femtosecond spatio-temporal information. We discuss possible near-field spectroscopic implementations, with contrast based on the metallic infrared Drude response, nano-scale impedance, infrared and Raman vibrational spectroscopy, phonon Raman nano-crystallography, and nonlinear optics to identify nanoscale phase separation (PS), strain, and ferroic order. With regard to applications, we focus on correlated and low-dimensional materials as examples that benefit, in particular, from the unique applicability of s-SNOM under variable and cryogenic temperatures, nearly arbitrary atmospheric conditions, controlled sample strain, and large electric and magnetic fields and currents. For example, in transition metal oxides, topological insulators, and graphene, unusual electronic, optical, magnetic, or mechanical properties emerge, such as colossal magneto-resistance (CMR), metal–insulator transitions (MITs), high-T C superconductivity, multiferroicity, and plasmon and phonon polaritons, with associated rich phase diagrams that are typically very sensitive to the above conditions. The interaction of charge, spin, orbital, and lattice degrees of freedom in correlated electron materials leads to frustration and degenerate ground states, with spatial PS over many orders of length scale. We discuss how the optical near-field response in s-SNOM allows for the systematic real space probing of multiple order parameters simultaneously under a wide range of internal and external stimuli (strain, magnetic field, photo-doping, etc.) by coupling directly to electronic, spin, phonon, optical, and polariton resonances in materials. In conclusion, we provide a perspective on the future extension of s-SNOM for multi-modal imaging with simultaneous nanometer spatial and femtosecond temporal resolution.  相似文献   

16.
Scanning near-field optical microscopy (SNOM) yields high-resolution topographic and optical information and constitutes an important new technique for visualizing biological systems. By coupling a spectrograph to a near-field microscope, we have been able to perform microspectroscopic measurements with a spatial resolution greatly exceeding that of the conventional optical microscope. Here we present SNOM images of Escherichia coli bacteria expressing a mutant green fluorescent protein (GFP), an important reporter molecule in cell, developmental, and molecular biology. Near-field emission spectra confirm that the fluorescence detected by SNOM arises from bacterially expressed GFP molecules.  相似文献   

17.
A wetting/dewetting process was utilized to prepare self-organized organic dye particles of micrometer and submicrometer size. Near-field scanning optical microscopy successfully identified near-field excited near-field fluorescence from single particles. The majority of the small particles with diameters around 2 mm or less, however, did not show fluorescence under near-field observation. In contrast, far-field fluorescence, when excited by a polarized evanescent field, was observed, with the intensity depending on the excitation polarization, indicating that molecules' transition moment within dye particles was oriented parallel to the substrate surface. Single particle fluorescence spectrum consistently showed an identical sharp peak with a large redshift, indicating that the particles were composed of identical dye aggregates similar to J-aggregates. These observations suggest that the near-field at the probe tip was polarized parallel to the probe axis. Another observation, that molecules were oriented in a similar direction among adjacent particles, suggests that the dewetting process contributed to the alignment of the molecular direction among adjacent particles, which further proves that the present specimen was formed by a self-organizing mechanism.  相似文献   

18.
基于有孔探针SNOM的近场拉曼光谱和成像技术的出现使得拉曼光谱的分辨率突破了光学衍射极限,从而提供了一个有力的工具对样品亚波长尺度之下的化学信息进行表征。文章讨论了探针性质对实现近场拉曼光谱的影响,并全面地介绍了有孔探针近场拉曼光谱发展十余年来在纳米尺度化学分辨成像、液-液界面性质研究、微观层面解释SERS增强机理、图像化反映SERS热点分布等诸多领域的研究进展。  相似文献   

19.
We present a probe concept for scanning near-field optical microscopy combining the excellent background suppression of aperture probes with the superior light confinement of apertureless probes. A triangular aperture at the tip of a tetrahedral waveguide (full taper angle approximately 90 degrees ) shows a strong field enhancement at only one rim when illuminated with light of suitable polarization. Compared to a circular aperture of equivalent size, the resolution capability is doubled without loss of brightness. For a approximately 60 nm sized triangular aperture, we measured an optical resolution <40 nm and a transmission of approximately 10(-4).  相似文献   

20.
Numerical simulations have been carried out in the framework of waveguide theory to model collection mode scanning near-field optical microscopy (SNOM). The theoretical model includes the optical fiber end and describes the metal coated aperture on the probe tip. The developed formalism goes beyond the existing Bethe-Bouwkamp theories for electromagnetic transmission of subwavelength apertures. The finite coating and optical fiber end are now taken into account. The new features enable us to simulate the near-field probes that are widely used in the collection mode SNOM. The emphases of the numerical analyses have been mainly on the resolution mechanism of the microscopy. Influence on the resolution from important parameters of the probe tips, such as the size of the apertures and the probe-sample distance, is extensively studied. The resolution dependence has been analyzed in the light of the near-field coupling efficiency of the probe tip. An optimum tip size has been found which is balanced between the significant signal transmission and the resolution of the device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号