首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Water washed manganese nodule leached residue (WMNLR) calcined at different temperatures was characterized by XRD, FTIR, TG-DTA, surface area, surface oxygen, and surface acid sites. Surface area, surface oxygen, surface hydroxyl group, and surface acid sites increase up to 400 degrees C and then decrease with further rise in calcination temperature up to 700 degrees C. The catalytic activity of the calcined samples was tested for single-step oxidation of benzene to phenol using hydrogen peroxide as the oxidant and acetic acid as the solvent at room temperature. The influence of various reaction parameters such as solvent, concentration of solvent, oxidant amount, time, temperature, and catalyst amount was studied to optimize the reaction conditions. WMNLR calcined at 400 degrees C showed the highest catalytic activity towards oxidation of benzene with 12.7% conversion and 98% selectivity.  相似文献   

2.
Four metakaolins were prepared by heating a Spanish kaolin at 600, 700, 800, and 900 degrees C for 10 h. Following preliminary optimization, these metakaolins were acid activated in 6 M hydrochloric acid at 90 degrees C for 6 h; the samples calcined at 600, 700, and 800 degrees C produced the highest surface area solids and were selected for further study. Variable-temperature diffuse reflectance infrared Fourier transform spectroscopy analysis of the resulting acid-activated metakaolins (AAMKs) identified a wide range of hydrogen bond strengths in adsorbed water at room temperature. Above 300 degrees C it was possible to fit the broad hydroxyl stretching band to seven contributing components at 3730, 3700, 3655, 3615, 3583, 3424, and 3325 cm(-1). As the sample temperature was increased, the 3730 cm(-1) band increased in intensity as the water hydrogen bonded to AlOHAl was thermally desorbed. The other six bands decreased in intensity. The spectra of adsorbed pyridine indicated the presence of both Br?nsted and Lewis acid sites on the surface of the air-dried AAMKs. Preheating the AAMK at 200 degrees C prior to pyridine sorption reduced the number of Br?nsted acid sites and increased the number of thermally stable Lewis acid sites. A reduction in the amount of adsorbed pyridine after pretreating the AAMK at 400 degrees C was tentatively attributed to a reduction in surface area. This was reflected in fewer thermally stable Lewis acid sites in the AAMK pretreated at 400 degrees C compared to the number present in the sample pretreated at 200 degrees C.  相似文献   

3.
In this study, we investigated the surface properties of granulated boehmite with vinyl acetate (G-BE20) and measured the amount of phosphate it adsorbed and the effect of contact time and solution pH on the adsorption process. The specific surface area (144.9?m2/g) and the number of surface hydroxyl groups (0.88?mmol/g) of G-BE20 were smaller than those of virgin boehmite (BE), which gave a specific surface area and number of surface hydroxyl groups of 297.0?m2/g and 1.08?mmol/g, respectively. The amount of phosphate adsorbed increased with the temperature. The isotherm model of Langmuir was used to fit experimental adsorption equilibrium data for phosphate adsorption onto G-BE20. The calculated thermodynamic parameters show the spontaneous and endothermic nature of the adsorption process. The equilibrium adsorption onto G-BE20 was reached within 16?h and the amount of phosphate adsorbed was 8.4?mg/g. The kinetic mechanism of phosphate uptake was evaluated with two different models: the Largergren pseudo first- and pseudo second-order models. The data obtained showed a better fit to the pseudo second-order model (0.991) than to the pseudo first-order model (0.967), as indicated by the r values. The rate constants for the adsorption of phosphate onto G-BE20 were calculated as 0.481?1/h and 0.029?g/mg?h. The adsorption of phosphate onto G-BE20 was the maximum in the pH range 3.0-4.0.  相似文献   

4.
Zeolite rho was prepared by hydrothermal synthesis using an 18-crown-6 ether (18C6) as a structure-directing agent, and the effects of the calcination temperature for removal of 18C6 on the physicochemical properties and CO2-adsorption properties were investigated. CO2 adsorption on zeolite rho calcined at 150 °C was lower than that on samples calcined at temperatures above 300 °C. For samples calcined above 300 °C, CO2 adsorption increased with increasing calcination temperature up to 400 °C. It is thought that the pore volume for adsorption of CO2 increased as a result of 18C6 removal, resulting in increasing CO2 adsorption. A decrease in CO2 adsorption for calcination from 400 °C to 500 °C was observed. The particle size of zeolite rho increased with increasing 18C6 molar ratio. Particle sizes of 1.0-2.1 μm and 1.4-2.6 μm were found by field-emission scanning electron microscopy and dynamic light-scattering, respectively. The particle size is controlled in these regions by adjusting the 18C6 molar ratio. XRD showed that zeolite rho samples with 18C6 molar ratios of 0.25-1.5 had high crystallinity. The adsorbed amount of CO2 is almost constant, at 3.4 mmol-CO2 g−1, regardless of the 18C6 molar ratio. However, CO2 selectivity, which is the CO2/N2 adsorption ratio, decreased. The amount of CO2 adsorbed on zeolite rho is lower than that on zeolite NaX, but higher than that on SAPO-34. The CO2/N2 adsorption ratio for zeolite rho was higher than those for SAPO-34 and zeolite NaX.  相似文献   

5.
The liquid-phase alkylation of phenol with benzyl alcohol was carried out using zirconia-supported phosphotungstic acid (PTA) as catalyst. The catalysts with different PTA loadings (5–20 wt.% calcined at 750 °C) and calcination temperature (15 wt.% calcined from 650 to 850 °C) were prepared and characterized by 31P MAS NMR and FT-IR pyridine adsorption spectroscopy. The catalyst with optimum PTA loading (15%) and calcination temperature (750 °C) was prepared in different solvents. 31P MAS NMR spectra of the catalysts showed two types of phosphorous species, one is the Keggin unit and the other is the decomposition product of PTA and the relative amount of each depends on PTA loading, calcination temperature and the solvent used for the catalyst preparation. The catalysts with 15% PTA on zirconia calcined at 750 °C showed the highest Brönsted acidity. At 130 °C and phenol/benzyl alcohol molar ratio of 2 (time, 1 h), the most active catalyst, 15% PTA calcined at 750 °C gave 98% benzyl alcohol conversion with 83% benzyl phenol selectivity.  相似文献   

6.
担载型钌催化剂吸附CO性能的原位红外研究   总被引:1,自引:0,他引:1  
用原位红外研究了CO的吸附与脱附,CO/H2的共吸附及反应,考察了焙烧温度对Ru/Al2O3及Ru/SiO2催化剂的影响,结果表明,经不同温度焙烧的催化剂样品,其吸附性能有很大差别。随着焙烧温度的升高,金属-载体相互作用增强,导致CO吸附量减少。Ru/Al2O3吸附的CO较稳定,而Ru/SiO2吸附的CO在高温易脱附。各不同CO吸会态间、多重态更易发生反应。在未焙烧的Ru/SiO2低CO/H2反应  相似文献   

7.
通过在ZrO_2中掺杂TiO_2,并在350-500℃下焙烧,制备了系列TiO_2-ZrO_2复合氧化物催化剂,将其应用于十八醇脱水制十八烯反应。随焙烧温度的升高,催化剂表面的Lewis酸性位量逐渐增加,450℃焙烧的催化剂Lewis酸性位量最多,焙烧温度继续升高则Lewis酸性位量降低;催化剂中未发现Br?nsted酸性位。焙烧温度≤400℃的TiO_2-ZrO_2复合氧化物形成Ti-O-Zr键,呈无定形态;焙烧温度400℃的TiO_2-ZrO_2复合氧化物呈单斜相和四方相ZrO_2晶型。晶相结构和酸性位量综合影响催化剂的十八醇脱水性能,具有单斜相和四方相ZrO_2晶型的催化剂上酸性位活性很低,具有无定形相的催化剂上酸性位活性显著增加,400℃焙烧的催化剂1-十八烯收率最高。  相似文献   

8.
In this paper, mesoporous alumina with different pore sizes and wall crystalline structures was synthesized at calcination temperatures over 550 degrees C. The characterization of the samples calcined at 550, 800, 1100, and 1300 degrees C, respectively, was performed using TEM, XRD, FTIR, TG/DTA, and N2 adsorption/desorption techniques. The correlation between pore size and wall crystalline structure on calcination temperature was systematically investigated.  相似文献   

9.
氯化铵对TiO2纳米晶的形成、 结构及性能的影响   总被引:2,自引:0,他引:2  
以四氯化钛为原料, 通过氯化铵诱导晶化和热挥发分解法制备了二氧化钛纳米晶, 经粉末XRD, TEM, IR和比表面积及热重分析等手段进行了表征. 通过对粒子生长动力学分析, 在700 ℃以下存在两种生长势, 400 ℃时出现转折, 400 ℃以下粒子生长所需活化能为8.23 kJ/mol; 400 ℃以上粒子生长需活化能为45.71 kJ/mol. 于200 ℃时灼烧样品的表面积最大, 对甲基橙光催化降解活性最高.  相似文献   

10.
以工业建材级黏土矿石粉为原料,经酸处理或煅烧改性后,利用其多孔性负载多乙烯多胺制得吸附材料,并考察了其硫化氢脱除性能.实验结果表明,经400℃煅烧改性的材料的硫化氢脱除效果最佳.考察了负载方法、吸附温度、水蒸气预处理和负载量等因素对吸附的影响,发现在较低温度以及预加湿的情况下,硫化氢的脱除效果最显著,脱除率接近100%.负载量为33.3%的吸附剂的穿透硫容及饱和硫容均优于其它负载量的吸附剂.再生实验表明,吸附剂可以在较低温度下轻易再生,且多次再生后脱硫效果无显著下降.红外光谱和比表面积测试结果表明,该吸附剂对硫化氢的吸附以化学吸附为主.  相似文献   

11.
Paramolybdate-LDHs with MgAl or ZnAl cations within the layers have been prepared by the ion-exchange method from hydrotalcites with different interlayer anions (OH-, NO3(-), and terephthalate). The samples and the oxides obtained after their calcination were characterized by element chemical analysis, PXRD, FT-Raman spectroscopy, thermal analysis (TG/DTA), N2 adsorption at -196 degrees C, and SEM. The results show that layered solids with hydrotalcite-type structure were obtained in which the interlayer space is occupied by heptamolybdate with a small amount of MoO4(2-) units formed through hydrolysis of the polyanion; both oxomolybdenum species undergo a progressive distortion of the octahedral units from 50 degrees C but are roughly stable up to 250 degrees C as a consequence of the interaction between the polyanion and the brucite-like layers. This distortion is responsible for the observed decrease in the height of the gallery for samples heated in the temperature range, 50-250 degrees C, with respect to the original samples. Rehydration of the calcined solids allows recovering of their original structures and the initial values for the gallery heights. Calcination between 300 and 400 degrees C gives rise to a collapse of the layered structure, and amorphous phases are formed, in which molybdenum is both octahedrally and tetrahedrally coordinated. Crystalline magnesium and zinc molybdates (MgMoO4 and ZnMoO4) are formed at 450 and 600 degrees C, respectively. All solids have some microporosity, which decreases with increasing the calcination temperature.  相似文献   

12.
A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 oC exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.  相似文献   

13.
以硝酸为胶溶剂, 两种拟薄水铝石为前驱体, 用胶溶法制备了镧-钡共稳定的氧化铝. 采用X 射线衍射(XRD)、表面分析仪(BET)、氨气程序升温脱附(NH3-TPD)和NO2程序升温脱附(NO2-TPD)技术对所制备的镧改性和镧钡共改性氧化铝的结构特性和表面性能进行了表征. XRD结果表明, 改性氧化铝在1273 K焙烧后均以γ-Al2O3相存在. 当BaO添加量达到14%(w)时, 有少量BaCO3生成. BET结果表明, 在1273 K下焙烧5 h后, 5%(w)La2O3稳定的氧化铝(Ba-0)和5%La2O3与8%BaO共同稳定的氧化铝(Ba-8)均具有较大的比表面积, 各种氧化铝的吸附等温线表明它们的孔形状均为狭缝型孔和瓶型孔, 孔径分布曲线表明, 仅有样品Ba-8的孔径分布较宽, 孔径为6-10 nm, 其它三种样品的孔径均集中在10 nm; NH3-TPD结果表明, 随着氧化钡添加量的逐渐增多, 氧化铝表面的酸量、酸强度逐步减少. NO2-TPD结果表明, 添加BaO后载体对NO2的吸附量增多, 随着BaO含量的增多, 体相Ba(NO3)2增多. 由于样品Ba-8同时具有很好的织构性质、适中的表面酸量和酸强度分布及NO2吸附脱附能力, 使得以它为载体的催化剂具有最好的催化性能,丙烷的起燃温度和完全转化温度分别为526 K和593 K.  相似文献   

14.
 采用溶胶-凝胶法制备了介孔TiO2-Al2O3复合氧化物载体,考察了载体的焙烧温度对负载型Au-Pd双金属催化剂加氢脱硫性能的影响,并采用X射线衍射、吸附吡啶的程序升温脱附、程序升温还原、红外光谱和N2物理吸附等技术对载体及催化剂进行了表征. 结果表明,不同温度焙烧的TiO2-Al2O3复合载体都具有介孔结构,其中773 K焙烧制得的TiO2-Al2O3复合载体的比表面积和孔容较大, B酸中心较多,以其为载体的Au-Pd 催化剂具有较好的加氢脱硫活性. 表征结果表明, 773 K焙烧制得的Au-Pd/TiO2-Al2O3催化剂中Au-Pd活性组分与载体的相互作用较强,催化剂上形成的AuxPdy合金的晶粒较小且数量较多,催化剂的酸量和活性组分的分散度较大,并且其上进行的加氢脱硫反应的活化能较低,这些因素均有利于催化剂活性的提高.  相似文献   

15.
The effects of doping with CeO2 and calcination temperature on the physicochemical properties of the NiO/Al2O3 system have been investigated using DTA, XRD, nitrogen adsorption measurements at −196°C and decomposition of H2O2 at 30–50°C. The pure and variously doped solids were subjected to heat treatment at 300, 400, 700, 900 and 1000°C. The results revealed that the specific surface areas increased with increasing calcination temperature from 300 to 400°C and with doping of the system with CeO2. The pure and variously doped solids calcined at 300 and 400°C consisted of poorly crystalline NiO dispersed on γ-Al2O3. Heating at 700°C resulted in formation of well crystalline NiO and γ-Al2O3 phases beside CeO2 for the doped solids. Crystalline NiAl2O4 phase was formed starting from 900°C. The degree of crystallinity of NiAl2O4 increased with increasing the calcination temperature from 900 to 1000°C. An opposite effect was observed upon doping with CeO2. The NiO/Al2O3 system calcined at 300 and 400°C has catalytic activity higher than individual NiO obtained at the same calcination temperatures. The catalytic activity of NiO/Al2O3 system increased, progressively, with increasing the amount of CeO2 dopant and decreased with increasing the calcination temperature.  相似文献   

16.
Equilibrium and breakthrough adsorptions on activated carbon fibers (ACF) were conducted for CO2 and CH4 gas mixtures and the selective separation of CO2 was demonstrated. An electric swing adsorption process (ESA) was exploited to effect the rapid desorption of adsorbed gas at atmospheric pressure. Also, the relationship between the electrical behavior and desorption characteristics of ACF is discussed. In a single component adsorption experiment, the amount of adsorbed CO2 reached up to 40 mg/g-ACF, twice as much as that of adsorbed CH4. Therefore, the separation factor, defined as the ratio of adsorbed CO2 to adsorbed CH4, was 2.0. Multicomponent experiments showed a higher separation factor of 5.2, owing to a roll-up phenomenon. The temperature increase is not linearly proportionate to the power input, while the passage of higher electrical voltage (30 V) caused the ACF temperature to exceed 200 degrees C within 30 s. CO2 desorption at low voltage was well accomplished by heating the ACF to temperatures <60 degrees C. An ACF adsorption bed regenerated with ESA showed a constant regeneration efficiency of over 85% with a regular breakthrough curve. The ESA method increased desorption efficiency by over 20%, compared with the vacuum method.  相似文献   

17.
Removal of phosphate by aluminum oxide hydroxide   总被引:17,自引:0,他引:17  
The development and manufacture of an adsorbent to remove phosphate ion for the prevention of eutrophication in lakes are very important. The characteristics of phosphate adsorption onto aluminum oxide hydroxide were investigated to estimate the adsorption isotherms, the rate of adsorption, and the selectivity of adsorption. Phosphate was easily adsorbed onto aluminum oxide hydroxide, because of the hydroxyl groups. The adsorption of phosphate onto aluminum oxide hydroxide was influenced by pH in solution: the amount adsorbed was greatest at pH 4, ranging with pH from 2 to 9. The optimum pH for phosphate removal by aluminum oxide hydroxide is 4. The selectivity of phosphate adsorption onto aluminum oxide hydroxide was evaluated based on the amount of phosphate ion adsorbed onto aluminum oxide hydroxide from several anion complex solutions. It is phosphate that aluminum oxide hydroxide can selectively adsorb. The selectivity of phosphate onto aluminum oxide hydroxide was about 7000 times that of chloride. This result indicated that the hydroxyl groups on aluminum oxide hydroxide have selective adsorptivity for phosphate and could be used for the removal of phosphate from seawater.  相似文献   

18.
Surface and catalytic properties of Cu/Zn mixed oxide catalysts   总被引:1,自引:0,他引:1  
Copper catalysts supported on zinc oxide, with different loading (1–20 wt.% CuO), were prepared by impregnation of the basic zinc carbonate with a water solution of copper nitrate. The impregnated samples were dried at 120°C and calcined at 400–700°C. The surface and catalytic properties of CuO loaded on ZnO were determined by N2 adsorption measurements conducted at −196°C and CO oxidation by O2 at 150–300°C, respectively. The results obtained revealed that the surface and catalytic properties of different solids were dependent upon CuO content and calcination temperature. The specific surface areas of various adsorbents decreased monotonically as a function of both calcination temperature and extent of loading. However, the activation energy of sintering, ΔES, was found to increase by increasing the amount of CuO present. On the other hand, the CO oxidation activity on various catalysts was found to increase progressively by increasing the calcination temperature from 400 to 500°C, then decreased by increasing the temperature from 500 to 700°C. The augmentation of CuO content from 1 to 5 wt.% resulted in an increase in the CO oxidation activity, which decreased by increasing the extent of loading above this limit.  相似文献   

19.
The effect of calcination temperature on the physico-chemical characterization of manganese nodule leached residue (MNLR) and water-washed manganese nodule leached residue (WMNLR) has been investigated on the basis of chemical analysis, XRD, TG-DTA, FTIR, surface hydroxyl groups, surface oxygen, reducing and oxidizing sites, surface area. XRD and IR confirm the presence of amorphous iron oxyhydroxides, delta-MnO2, which are converted to alpha-Fe2O3 and gamma-Mn2O3 phases above 400 degrees C of calcination, respectively. A solid solution of Fe2O3 and Mn2O3 is formed above 700 degrees C. The surface area, surface hydroxyl group, surface oxygen, reducing and oxidizing sites increase with the increase in calcination temperature up to 400 degrees C and then decrease with further rise in calcination temperature up to 700 degrees C. The catalytic activity of the sample towards H2O2 decomposition shows the similar trend as surface properties. A suitable Mn(3+)Mn4+ couple favours H2O2 decomposition reaction. The activity has been correlated with various physico-chemical properties.  相似文献   

20.
Mesoporous ceria/alumina, CeO(2)/Al(2)O(3), composites containing 10, 20 and 30% (w/w) ceria were prepared by a novel gel mixing method. In the method, ceria gel (formed via hydrolysis of ammonium cerium(IV) nitrate by aqueous ammonium carbonate solution) and alumina gel (formed via controlled hydrolysis of aluminum tri-isopropoxide) were mixed together. The mixed gel was subjected to subsequent drying and calcination for 3 h at 400, 600, 800 and 1000 degrees C. The uncalcined (dried at 110 degrees C) and the calcined composites were investigated by different techniques including TGA, DSC, FTIR, XRD, SEM and nitrogen adsorption/desorption isotherms. Results indicated that composites calcined for 3 h at 800 degrees C mainly kept amorphous alumina structure and gamma-alumina formed only upon calcinations at 1000 degrees C. On the other hand, CeO(2) was found to crystallize in the common ceria, cerinite, phase and it kept this structure over the entire calcination range (400-1000 degrees C). Therefore, high surface areas, stable surface textures, and non-aggregated nano-sized ceria dispersions were obtained. A systematic texture change based on ceria ratio was observed, however in all cases mesoporous composite materials exposing thermally stable texture and structure were obtained. The presented method produces composite ceria/alumina materials that suit different applications in the field of catalysis and membranes technology, and throw some light on physicochemical factors that determine textural morphology and thermal stability of such important composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号