首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
The frequency shift and linewidth variation of an atomic oscillator placed next to a prolate dielectric or metal spheroid are found within the framework of the classical approach. Both the frequency shift and linewidth are shown to be substantially dependent on the location of the atom and the form of the nanospheroid and capable of reaching very high values near the surface of the nanospheroid under plasmon (polariton) resonance conditions. The predictions are compared with those found for spherical and cylindrical geometries. The prolate spheroid is treated as a model of a needle tip in apertureless optical scanning microscopy. Effects of sharpness of interaction between the nanospheroid tip and atoms are considered. Received 2 January 2002 and Received in final form 3 April 2002 Published online 28 June 2002  相似文献   

2.
周振婷  杨理  姚洁  叶燃  徐欢欢  叶永红 《物理学报》2013,62(18):188104-188104
采用纳米球刻蚀法结合热蒸发技术制备了银和氧化硅交替层叠的纳米颗粒阵列. 扫描隧道显微镜测量结果表明, 该纳米阵列呈锥形多层结构. 分光光度计测量样品表明, 该纳米阵列在近红外波段存在明显的透射谷, 该透射谷来源于金属纳米颗粒局域等离激元的激发, 随着金属/介质层数的增多, 透射谷的位置向短波方向移动. 利用HFSS软件对该纳米阵列进行了仿真, 并分析了透射谷蓝移的原因. 关键词: 纳米球刻蚀技术 金属/介质纳米颗粒 表面等离子激元  相似文献   

3.
梁玲玲  赵艳  冯超 《物理学报》2020,(6):207-215
基于阳极氧化铝模板,采用真空蒸镀技术,制备了高度有序的周期性银纳米球阵列.阵列几何结构参数调控实验发现,通过控制蒸镀厚度,可实现对阵列中银纳米球尺寸(直径)和间距的有效调控,进而有效实现对紫外-可见-近红外各波段吸收峰位和峰宽的调制.吸收光谱测试显示,该纳米阵列在紫外、可见和近红外波段都具有明显的电磁波吸收特性.时域有限差分理论模拟结合实验分析不同波段光吸收特性的物理机制,紫外超窄强吸收为银、铝介电环境非对称诱发的法诺共振,可见波段吸收源自于银纳米粒子局域表面等离子体共振,近红外波段强吸收为银纳米球阵列表面晶格共振所激发.  相似文献   

4.
In this paper, enhanced fluorescence from a silver film coated nanosphere templated grating is presented. Initially, numerical simulation was performed to determine the plasmon resonance wavelength by varying the thickness of the silver film on top of a monolayer of 400 nm nanospheres. The simulation results are verified experimentally and tested for enhancing fluorescence from fluorescein isothiocyanate whose excitation wavelength closely matches with the plasmon resonance wavelength of the substrate with 100 nm silver film over nanosphere. The 12 times enhancement in the intensity is attributed to the local field enhancement in addition to the excitation of surface plasmon polaritons along the surface.  相似文献   

5.
The electrodynamic response of electron gas on the surface of a nanosphere in a weak magnetic field is studied. The case of the photon polarization vector oriented parallel to the magnetic field (the Faraday geometry) is considered. An analytic expression for the coefficient of electromagnetic-radiation absorption by the nanosphere is derived. It is shown that, at low temperatures, the absorption curve has, in the general case, two resonance peaks. The curve also exhibits breaks.  相似文献   

6.
Local field surface plasmon excitation of pair arrays of silver nanospheres was studied using three-dimensional finite-difference time-domain method. The near-field enhancement was associated with the radius of nanosphere and the incident wavelength, the highest of which always appeared in the penultimate gaps, regardless of the number of the pairs. The surface plasmon resonance could be controlled and tuned by radius of nanosphere and incident wavelength.  相似文献   

7.
Dispersing nanospheres on a large glass substrate is the key to fabricate noble metal nanostructures for localized surface plasmon resonance through dispersed nanosphere lithography. This article reports that by modifying the glass surface with low dose ion implantation and successively dip coating the surface with poly(diallyldimethyl ammonium chloride) (PDDA), polystyrene or silica nanospheres can be dispersed on a large glass substrate. Investigation shows that several kinds of ions, such as silicon, boron, argon, and arsenic, can improve the nanosphere dispersion on glass, attributed to the ion bombardment-caused silicon increment. Ion implantation imposes no surface roughness or optical loss to the glass substrate, thus this method is suitable for localized surface plasmon resonance application. Experiments show silicon ion implantation can best disperse the nanospheres. For the gold nanostructures obtained by obliquely evaporating 30 nm of gold film onto the polystyrene nanospheres, which are dispersed on a silicon ion implanted glass substrate, a localized surface plasmon resonance sensitivity of 242 nm/RIU is achieved.  相似文献   

8.
The electrodynamic response of an electron gas on the surface of a nanosphere is investigated. An analytical relationship for the absorption of electromagnetic radiation by the nanosphere is derived. It is demonstrated that the absorption curve at low temperatures has two resonance peaks. The shape, position, and intensity of the peaks are examined. The dependence of the absorption on the radiation frequency exhibits kinks associated with the degeneracy of the electron gas. The number and position of the kinks and the absorption jumps at these kinks are analyzed. Consideration is given to the cases of an isolated sphere and a sphere exchanging electrons with a reservoir.  相似文献   

9.
The integrodifferential equation method is used to study the spectrum of a nanoparticle colloid for the example of interaction of three arbitrarily arranged dielectric particles made up of nonresonant atoms (the eigenfrequency of the transition is far from the emission frequency) with incorporated barium atoms in an external optical radiation field. The effect on the light-scattering properties of a nanosphere in the ensemble of its distant “neighbors” is studied; an additional peak associated with them is observed as a frequency close to the resonance for an isolated nanosphere, which under certain conditions has higher intensity than the main peak corresponding to optical near-field resonance in a two-particle system. The dependence of the spectrum of the nanosized system on the geometric structure is studied, and it is shown that very precise tuning of the resonance frequency is possible by varying the angular distribution of the particles. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 5, pp. 641–646, September–October, 2006.  相似文献   

10.
The localized surface plasmon resonance properties of Al and Alcore/Al2O3 shell nanosphere dimers with Al and Al core nanosphere radii of 20 nm and Al2O3 shell of 2 nm in the deep-ultraviolet region have been studied using the finite difference time domain method. The extinction spectra and the electric field distribution profiles of the two dimers for various gap distances between two individual nanospheres are compared with those of the corresponding monomers to reveal the extent of plasmon coupling. It is found that with the interparticle distance decreasing, a strong plasmon coupling between two Al or Alcore/Al2O3 shell nanospheres is observed accompanied by a significant red shift in the extinction spectra at the parallel polarization direction of the incident light related to the dimer axis, while for the case of the perpendicular polarization direction, a weak plasmon coupling arises characterized by a slight blue shift in the extinction spectra. The electric field distribution profiles show that benefiting from the dielectric Al2O3 shell, the gap distance of Alcore/Al2O3 shell nanosphere dimers can be tailored to < 1 nm scale and results in a very high electric field enhancement. The estimated surface-enhanced Raman scattering enhancement factors suggests that the Alcore/Al2O3 shell nanosphere dimers with the gap of < 1 nm gave rise to an enhancement as high as 8.1 × 107 for interparticle gap = 0.5 nm. Our studies reveal that the Alcore/Al2O3 shell nanosphere dimers may be promising substrates for surface-enhanced spectroscopy in the deep-ultraviolet region.  相似文献   

11.
In this paper, theoretical calculations based on dipole-limit are performed to investigate the effects of curvature on the surface plasmon resonance (SPR) properties of nanometer size gold spheroid and shell. By comparing the aspect ratio with the shell thickness, we demonstrated that the curvature radius is a common better factor that can be used to predict the SPR wavelength and shift fashion. For nanospheroid, increasing the ratio of curvature radius corresponding to the climaxes leads to an increase in the ratio of SPR wavelength, whereas increasing the ratio of curvature radius of outer and inner surface in nanoshell leads to an decrease in the ratio of SPR wavelength. As a morphologic factor, curvature radius plays an important role in affecting the distribution of electron density, and consequently controlling the SPR frequency.  相似文献   

12.
Within the limits of a new approach based on the Mie scattering theory, polarization bremsstrahlung radiation (PBR), arising during electron scattering on a metallic nanosphere with radius from 10 to 100 nm placed in a dielectric medium is theoretically investigated. The spectral range close to the plasmon resonance is considered, where the contribution of the polarized channel to bremsstrahlung radiation dominates. Spectral, velocity, and angular PBR characteristics are calculated. The sensitivity of the PBR spectrum to the dielectric permittivity of the medium surrounding the nanosphere is demonstrated.  相似文献   

13.
深入浅出地分析了金属表面等离体子振荡形成的机理,利用拉普拉斯方程得到了半无限金属、金属薄膜和球状纳米金属颗粒的表面等离体子振荡频率。  相似文献   

14.
李娆  朱亚彬  狄月  刘冬雪  李冰  钟韦 《物理学报》2013,62(19):198101-198101
采用纳米球刻蚀技术中漂移法在玻璃基片上制备较大 面积不同直径的聚苯乙烯小球掩模板, 采用磁控溅射技术在掩模板上沉积不同厚度的金薄膜, 去除聚苯乙烯小球后, 通过扫描电子显微镜观察到周期排列的三角状金纳米颗粒点阵. 通过紫外-可见分光光度计测试所制备样品的光吸收特性, 发现表面等离子体共振峰随粒径增大发生红移, 随金纳米颗粒高度增加发生蓝移. 基于Mie理论, 利用Matlab软件编程对不同粒径的金阵列光吸收特性进行理论模拟, 并与实验结果进行对比. 关键词: 纳米球刻蚀 金纳米颗粒阵列 表面等离子体共振  相似文献   

15.
金属纳米材料因其表面等离子体共振特性而备受关注。异质结构的金属纳米材料的光学特性相比于同质结构因其材料的不同破坏了原有结构的对称性,对称性的破坏将引起光学性质的改变,相邻两个颗粒之间的相互作用会产生Fano共振。Fano共振是由异质纳米结构的表面等离子体共振耦合引起的,通过合理地调控表面等离子体共振的耦合,将进一步调控Fano共振的强度同时促使异质结构的电场增强特性和辐射特性得到进一步优化。受金银等贵金属的带间跃迁影响,金属铝纳米材料成为研究紫外-近紫外光区的表面等离子体共振研究最佳选择。采用有限时域差分方法研究了Ag-Al纳米球二聚体的光学特性。研究了Ag和Al纳米球组成的二聚体的吸收光谱与入射光偏振方向、纳米球半径、颗粒间距和介质折射率等几何结构及物理参数的关系,并深入讨论了二聚体的局域场分布规律;讨论了获取更高效的Fano共振光谱的方法。由于材料的对称性被破坏,异质二聚体的光学性质与同质二聚体明显不同,Ag-Al异质纳米球二聚体呈现出在紫外和可见光区的双Fano共振现象。Ag-Al二聚体表面等离子体互相耦合引起Fano共振从而导致表面等离子体的共振抑制和增强。研究结果对在紫外-可见光区的表面等离子体应用、纳米光学器件的设计与开发及基于表面等离子体共振的表面增强光谱、生物传感和检测研究等有一定参考价值。  相似文献   

16.
Scattering field interactions and surface plasmon resonance in a coupled silver nanodumbbell (a pair of silver nanosphere connected by a silver nanobar) are simulated by using the three-dimensional finite-element method. The enhancement of scattering cross section which exhibits a blue-shifted is associated with the diameter of the silver nanobar and the wavelength of incident light. Interestingly, the generated optical cloud exceeds two times of the nanodumbbell size which can be turned by varying the diameter of the silver nanobar.  相似文献   

17.
李卫  徐岭  孙萍  赵伟明  黄信凡  徐骏  陈坤基 《物理学报》2007,56(7):4242-4246
以自组装单层胶体小球阵列为掩模,采用直接胶体晶体刻蚀技术在硅表面制备二维有序尺寸可控的纳米结构.在样品制备过程中,首先通过自组装法在硅表面制备了直径200nm的单层聚苯乙烯(PS)胶体小球的二维有序阵列;然后对样品直接进行反应离子刻蚀(RIE),以氧气为气源,利用氧等离子体对聚苯乙烯小球和对硅的选择性刻蚀作用,通过改变刻蚀时间,制备出不同尺寸的PS胶体小球的有序单层阵列;接着以此二维PS胶体单层膜为掩模,以四氟化碳为气源对样品进行刻蚀;最后去除胶体球后得到二维有序的硅柱阵列.SEM和AFM的测量结果表明:改变氧等离子体对胶体球的刻蚀时间和四氟化碳对硅的刻蚀时间,可以控制硅柱的尺寸以及形貌,而硅柱阵列的周期取决于原始胶体球的直径. 关键词: 胶体晶体刻蚀 纳米硅柱阵列  相似文献   

18.
提出了一种可用于表面增强拉曼测量的基于金属纳米圆盘上方放置金属纳米球颗粒构成的金属纳米结构,其在径向偏振光束激发下,由于金属纳米圆盘的呼吸模式表面等离激元共振的作用,可以形成纵向电场有效增强的间隙模式等离激元共振。对此进行了有限元模拟计算研究,计算结果证明该间隙模式的纵向电场分量相对于径向偏振入射光的有效激发横向电场分量增强了100倍以上。为了更清晰地展现这种新型纳米结构的光谱特性以及表面电场分布特征,同时对单个金属纳米圆盘,单个金属纳米球,金属薄膜,金属纳米球-金属薄膜这几种纳米结构在同一个模拟计算框架下进行了计算以及比较分析。由于可以把金属纳米球类比为金属探针的尖端,所提出的新型间隙模式也有望在针尖型拉曼增强中得到应用。  相似文献   

19.
A versatile nanosphere composite lithography(NSCL) combining both the advantages of multiple-exposure nanosphere lens lithography(MENSLL) and nanosphere template lithography(NSTL) is demonstrated. By well controlling the development, washing and the drying processes, the nanosphere monolayer can be well retained on the substrate after developing and washing. Thus the NSTL can be performed based on MENSLL to fabricate nanoring, nanocrescent and hierarchical multiple structures. The pattern size and the shape can be systemically tuned by shrinking nanospheres by using dry etching and adjusting the tilted angle. It is a natural nanopattern alignment process and possesses a great potential in the scope of nano-science due to its low cost,simplicity, and versatility for variuos nano-fabrications.  相似文献   

20.
The interaction of a charged particle with a nanosphere is studied based on the dielectric response theory. We obtain the analytical expressions of the induced potential and stopping power, as the charged particle moving outside the nanosphere with a constant velocity. From our results, since the spherical shape limitation, the well-known V-shaped wake effect tracing the particle cannot be observed clearly no matter at the nanosphere surface or in the bulk. Besides, we also find that the particle can even gain energy from the electron polarization as the particle moves to the nanosphere at relatively low velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号