首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为研究碳化硼陶瓷的抗侵彻性能,开展了?12.7 mm钢球侵彻碳化硼陶瓷及复合靶板、12.7 mm长杆弹侵彻超高分子量聚乙烯纤维(UHMWPE)约束碳化硼陶瓷复合靶板实验,讨论了碳化硼陶瓷的破坏模式,研究了约束方式对碳化硼陶瓷抗侵彻性能的影响。结果表明:在钛合金/UHMWPE背板约束作用下,弹丸与陶瓷的相互作用时间更长,产生更细的陶瓷粉末,大尺寸碎片含量减少,吸收的能量更多,陶瓷的抗侵彻性能进一步提高;背板在弹体和陶瓷锥的共同冲击下,造成钛合金的花瓣形卷边破坏,UHMWPE层合板伴随着较大范围的层间分层,形成"X"形隆起现象;采用纤维约束陶瓷,使碳化硼陶瓷板在子弹侵彻时能够保持完整,增强了对弹体的磨蚀作用,提高了抗弹性能,具有一定的抗多次打击能力。通过分析碳化硼陶瓷复合装甲的抗侵彻机理,为今后复合装甲的优化设计提供了参考依据。  相似文献   

2.
基于合理简化假设建立快捷实用的工程分析模型是研究复合靶板抗弹体冲击能力的重要方法。已有弹体冲击陶瓷/金属复合靶板理论模型的形式及计算过程复杂,并且缺少弹体超高速(弹体初速大于1 500m/s)贯穿复合靶板的实验验证。综合考虑弹体侵彻破碎陶瓷锥体过程中破碎陶瓷强度的下降、弹体初速对破碎陶瓷锥半锥角取值的影响,以及金属背板挠曲变形对弹体侵彻破碎陶瓷锥的影响,基于半流体动力学Alekseevskii-Tate(A-T)模型建立了预测弹体超高速贯穿陶瓷/金属复合靶板残余速度的简化分析模型。通过与实验数据以及基于LS-DYNA有限元分析软件开展的钨合金长杆弹(初速1 800~2 600m/s)贯穿Al_2O_3陶瓷/RHA钢复合靶板数值模拟结果对比,验证了简化分析模型、数值模型及其相应参数的正确性和适用性。进一步基于简化模型,在总厚度或总面密度一定的条件下,讨论了4种陶瓷面板(Al_2O_3、AlN、SiC、B4C)和两种金属背板(RHA钢、铝)复合靶板的弹道性能。  相似文献   

3.
运用LS-DYNA动力学分析软件,对具有不同橡胶夹层厚度的陶瓷/橡胶/钢复合靶在30°和60°倾角下的射流侵彻情况进行了数值模拟。采用聚能装药基准弹,进行了剩余穿深实验,研究了射流侵彻陶瓷/橡胶/钢复合靶后射流速度、靶板变形和剩余穿深,分析了倾角和橡胶夹层厚度对复合靶抗射流侵彻性能的影响机理。结果表明:射流侵彻陶瓷/橡胶/钢复合靶的性能受倾角的影响很大,尤其是在大倾角下影响更为显著;橡胶夹层对射流侵彻性能有一定的影响,但其厚度的变化对射流侵彻性能的影响很小。  相似文献   

4.
为了研究陶瓷复合靶的抗侵彻性能,在陶瓷的空腔膨胀理论中,提出了一个表征陶瓷损伤的损伤因子。基于考虑损伤的陶瓷空腔膨胀理论和金属空腔膨胀理论,并忽略靶板侧向边界的影响,根据陶瓷材料和金属材料的特点,按照弹-靶交界面处材料的不同应力状态,分4种情况进行了讨论。分别求得了4种分区下的陶瓷靶板的抗侵彻阻力,分析了影响陶瓷靶板抗侵彻阻力的材料性质。结果表明:(1)在陶瓷靶板的材料参数中,陶瓷失效后的压剪系数对靶板阻力的影响较大,而抗拉强度和抗压强度对靶板阻力的影响较小;(2)当陶瓷靶板近似为一个无限大的靶板时,其裂纹区的相对尺寸及空腔膨胀压力是一个常数。  相似文献   

5.
陶瓷是具有轻质高强特性的常用抗弹材料,但其本身的脆性特点使得陶瓷利用率较低,局部的击穿往往导致整块陶瓷破碎。为了提高陶瓷的利用率,提出了一种分层梯度陶瓷球金属复合结构,并通过数值模拟研究了陶瓷球尺寸及着弹点的影响。从子弹和靶板的变形、弹速变化和塑性波传播等角度分析了陶瓷球金属复合结构的抗弹机理,并对结构进行了梯度优化设计。研究结果表明,直径为7.2 mm的陶瓷球结构的综合抗弹性能良好,在此基础上设计的梯度陶瓷球结构能进一步提升抗弹性。陶瓷球金属复合靶板呈局部破坏,靶板其他位置仍具有抗打击能力。  相似文献   

6.
 通过分析应力波在橡胶复合靶板中的传播特性,研究了复合靶板上各层质点速度在应力波作用下的变化情况,分析了应力波在橡胶复合靶板对射流干扰中的作用,结合射流在空气中的断裂模型,提出了射流在复合靶影响下的断裂模型;分析了橡胶夹层厚度对复合靶板抗射流侵彻性能的影响;通过脉冲X光照相技术和穿深实验,研究了橡胶夹层厚度不同时,在射流以68°倾角侵彻下,橡胶复合靶板对56 mm口径基准成型装药射流的干扰情况及射流的剩余侵彻能力。研究结果表明:理论分析与实验结果相吻合;橡胶复合靶板对射流有很好的干扰作用;在满足结构效应的情况下,随着天然橡胶夹层厚度的增加,应力波对射流的干扰能力降低,射流的变形程度减小,复合靶板的防护能力降低。  相似文献   

7.
以钢/铝双硬度爆炸焊接复合靶为研究对象,采用系列弹道实验和数值模拟方法,研究了其在球形弹丸垂直侵彻作用下的抗侵彻性能。侵彻实验利用直径为14.5mm的滑膛枪发射直径为6mm的钢质球形弹丸;采用LS-DYNA3D非线性有限元程序和有限元-光滑粒子流体动力学(FE-SPH)耦合法,进行数值模拟。基于实验和数值模拟结果,分析了不同靶板的毁伤机理和破坏模式,以及靶板厚度、强度等因素对复合靶抗侵彻性能的影响。结果表明:在球形弹丸的垂直侵彻作用下,钢面板发生剪切冲塞破坏,铝背板发生延性扩孔破坏;对于双层靶而言,钢面板与铝背板的厚度比约为2/3时,复合靶的抗侵彻性能最差;数值计算结果与实验结果吻合良好,表明FE-SPH耦合算法可较好地预测双层复合靶板的抗侵彻性能。  相似文献   

8.
基于军用人员运输和弹药运输车辆对小型动能弹的防护需求,多孔板作为新型防护装甲可以在保证防护作用的前提下实现装甲防护轻量化。关于陶瓷多孔板的装甲防护性能研究较少。基于LS-DYNA 3D软件,应用FEM/SPH耦合算法对弹丸侵彻不同形状(三角形、圆形、正方形)孔结构的AD95陶瓷多孔板进行了数值模拟。通过计算得出不同形状多孔板的相对防护系数,比较弹丸的剩余速度及动能,可以优选出防护性能最佳、质量更轻的多孔板。研究发现,圆孔板抗弹性能最优,并且FEM/SPH耦合算法能形象地模拟陶瓷的开裂、飞溅现象,与实际情况吻合更好。  相似文献   

9.
为研究预应力陶瓷的抗侵彻性能,利用AUTODYN仿真软件模拟了对SiC陶瓷施加预应力的过程,并开展了长杆弹以不同速度侵彻预应力陶瓷的数值仿真研究,确定了预应力陶瓷的抗侵彻性能。通过对比分析,得到了不同载荷下陶瓷内部的应力分布状态,以及陶瓷抗侵彻性能与预应力的关系。结果表明:对陶瓷施加预应力可以有效提高其抗侵彻能力;但随着加载预应力的进一步提高,即当陶瓷中心部位预应力大于112MPa时,陶瓷的抗侵彻能力反而下降,陶瓷加载的预应力与其抗侵彻性能之间存在最佳匹配关系。  相似文献   

10.
为了研究双层楔形装药反应装甲中线上不同着靶点位置对射流干扰的影响,利用模拟仿真软件LSDYNA-3D对其干扰射流的能力进行评估,分别对侵彻过程中飞板的运动状态、杵体断裂情况和接触后效靶板的瞬时速度、侵彻靶板的深度和开坑等进行分析,并通过试验进行对比分析。研究发现:着靶点在双层楔形装药反应装甲中线顶端区域时,受边界效应影响严重,双层楔形装药反应装甲干扰射流作用不明显,杵体在接触靶板前未断裂,致使靶板被击穿;着靶点在160mm处时,射流侵彻双层楔形装药反应装甲后,杵体断裂时间最早,且被切割成多段并发生明显位移,杵体接触靶板瞬时速度最低,在后效靶板上的侵彻深度最小,抗侵彻效果优于传统双层平板装药。模拟计算与试验测量结果最大误差不超过10%,符合较好。  相似文献   

11.
在现有双层平板装药结构爆炸反应装甲(ERA)的基础上,设计了4种双层楔形装药ERA,利用模拟仿真软件LS-DYNA 3D对其干扰射流的能力进行评估,分别对侵彻过程中平板运动状态、射流头部的速度变化及偏转程度、杵体断裂情况、侵彻靶板的深度及分布等进行分析,以选出最优方案。对比发现:方案3聚能射流速度下降最快,侵彻深度最浅且分布均匀,拥有最好的防护性能;方案4次之;方案1较方案4差些;方案2最差。且方案3和方案4中出现类似于爆炸焊接原理形成的复合飞板层。合理使用楔形装药可以使射流切割更加均匀,增强坦克的防护性能,为以后在装药结构上的探索提供了理论依据。  相似文献   

12.
为了研究Q235钢多层板的抗侵彻性能,进行了直径为9.45 mm的钨合金球形破片侵彻7.2 mm和(3.6+3.6)mm厚Q235钢双层板试验,获得了相应的弹道极限。在此基础上,建立数值仿真模型,研究了钨合金球侵彻接触式等厚3层、4层、5层、6层板的弹道极限。通过量纲分析方法,分析了分层数对靶板弹道极限的影响。结果表明:对于球形破片,总厚度为7.2 mm的等厚双层板的抗侵彻性能高于单层板;当分层数大于2时,接触式多层等厚靶板的弹道极限随着层数的增加而减小,即分层数越多,靶板的抗侵彻性能越低,通过量纲分析方法得到了靶板分层数与破片弹道极限的关系。研究结果可为未来装甲防护设计提供一定的参考。  相似文献   

13.
为了研究V形反应装甲中线上不同弹着点位置对射流干扰的影响,利用三维有限元程序(LS-DYNA)对V形反应装甲靶板的射流侵彻过程进行模拟,并通过实验进行对比分析。结果表明,数值模拟结果与实验结果符合较好。弹着点不同时,V形反应装甲靶板对射流的干扰效果有明显差别,并且随着弹着点与底端距离的增大,射流在后效靶板上的侵彻深度呈先减小后增大的趋势;当弹着点距顶端6.25倍射流直径时,射流在后效靶板上的侵彻深度最小,该点的防护能力最优;顶端的防护能力优于底端。  相似文献   

14.
聚能射流对氧化铝陶瓷靶的侵彻特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 建立了考虑损伤的求解靶板阻力的理论模型,以此来评估陶瓷靶板的抗侵彻能力;数值模拟了长杆弹侵彻氧化铝陶瓷靶的破坏特性,结合实验结果确定了氧化铝陶瓷本构模型中的材料参数。建立了聚能射流侵彻氧化铝陶瓷靶的计算模型,对射流的形成机理及氧化铝陶瓷靶的抗侵彻性能进行研究,讨论了药型罩的几何尺寸对所形成的射流速度及侵彻深度的影响。结果表明:药型罩的锥角和壁厚增大,射流速度减小,壁厚对射流速度梯度的影响较大;同样,药型罩的锥角对侵彻深度也有较大的影响。  相似文献   

15.
为了进一步提升反应装甲的防护能力,设计了一种新型多三明治结构反应装甲,并得出5种不同尺寸的反应装甲。第1种尺寸的反应装甲在传统反应装甲的中间部位加一层钢板,第2至第5种尺寸的反应装甲在第1种尺寸的基础上进行设计,但反应装甲总厚度均与传统反应装甲相同。采用ANSYS-LSDYNA软件进行数值模拟,与传统结构反应装甲就射流断裂时刻、射流刚接触后效靶板时刻、射流失去干扰时刻以及最终对后效靶板的侵彻结果进行了对比。为了更加直观地反映新结构反应装甲对射流干扰的强度,将5种反应装甲与传统双层反应装甲进行侵彻数据对比。模拟结果表明:A型反应装甲头部射流偏转距离最长;新结构反应装甲对射流的干扰时间均比传统反应装甲长,其中E型反应装甲对射流的干扰时间最长,A型反应装甲防护效果最好;在与传统反应装甲厚度相同的情况下,D型反应装甲的防护效果最好。选用A型、D型和F型反应装甲来做验证实验,结果表明数值模拟结果可靠。  相似文献   

16.
为研究聚脲涂层复合靶板的抗侵彻性能,利用球形弹丸开展了相近面密度下的钢质靶板与喷涂聚脲涂层复合结构的弹道冲击实验,得到了钢靶与采用不同涂覆方式制备的聚脲涂层复合结构的抗侵彻性能,分析了失效模式和吸能机理。结果表明:冲击过程中,前聚脲涂层能有效缓冲弹体与钢靶之间的撞击载荷,使钢靶产生预变形,降低弹体的相对侵彻速度,延缓钢靶绝热剪切破坏的发生,提高复合结构的弹道极限;后聚脲涂层可与钢靶协调变形,形成冲塞质量块吸能,吸收弹体动能,在弹速较高时有较好的吸能能力。  相似文献   

17.
在SPH/FEM耦合算法程序中引入了陶瓷和金属材料的本构模型,对钨合金长杆弹侵彻陶瓷复合靶开展了数值模拟。给出了侵彻过程的物理图像,并分析了陶瓷靶的抗侵彻机理。对不同入射速度下的计算结果和实验结果进行了对比,计算得到的侵彻深度和实验值比较一致,验证了耦合算法的有效性。  相似文献   

18.
为得到干扰聚能射流能力更好的爆炸反应装甲,在经典爆炸反应装甲的基础上,设计了一种双层楔形飞板爆炸反应装甲。利用ANSYS/LSDYNA-3D仿真软件对3种不同方案进行了模拟计算,分别对各方案中飞板飞行形态、逃逸射流特性、射流的动能变化以及聚能射流对靶板的侵彻深度进行了分析。结果表明:夹层炸药引爆后,楔形飞板在向外飞出的同时具有一定的旋转特征,合理的摆放结构能够增大飞板与射流的作用面积;聚能射流在穿过反应装甲后,动能急剧下降,穿深能力降低,方案二聚能射流侵彻深度最浅,方案三次之,方案一最深,表明方案二具有良好的防护效果。对楔形飞板的研究丰富了爆炸反应装甲的结构设计,为反应装甲的进一步研究提供了理论参考。  相似文献   

19.
 利用LS-DYNA3D软件,对有攻角条件下伸出式侵彻体侵彻单层靶板及等厚度双层间隔靶板进行了数值模拟研究,从靶后动能和靶板破坏程度的角度对比了伸出体与同质量、同外径的基准杆侵彻单/双层靶板的能力。得出了侵彻体动能随时间变化的规律,分析了侵彻过程中攻角、速度及靶板分层3个重要因素对侵彻体侵彻能力的影响。结果表明:当攻角小或速度大时,伸出式侵彻体相对基准杆有较明显的优势;当双层靶板的间隔与基准杆长度相等时,靶板的分层对伸出体的侵彻性能几乎无影响,而对基准杆有较大影响,说明伸出体侵彻多层间隔防护结构的能力明显优于基准杆。  相似文献   

20.
杆式动能弹侵彻陶瓷复合靶的数值模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 根据已有的实验数据和文献参数,确定了YB-AD90陶瓷材料的JH-2模型参数。采用Autodyn-2D程序,对杆式动能弹侵彻YB-AD90陶瓷复合靶的侵彻深度和动力学侵彻过程进行了数值模拟。研究结果表明,采用的数值模拟方法和陶瓷材料JH-2模型参数合适,模拟结果与实验结果基本吻合,并且能够模拟动态侵彻过程中弹丸头部的形状变化、材料破碎和通道塌陷等重要特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号