首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在现有双层平板装药结构爆炸反应装甲(ERA)的基础上,设计了4种双层楔形装药ERA,利用模拟仿真软件LS-DYNA 3D对其干扰射流的能力进行评估,分别对侵彻过程中平板运动状态、射流头部的速度变化及偏转程度、杵体断裂情况、侵彻靶板的深度及分布等进行分析,以选出最优方案。对比发现:方案3聚能射流速度下降最快,侵彻深度最浅且分布均匀,拥有最好的防护性能;方案4次之;方案1较方案4差些;方案2最差。且方案3和方案4中出现类似于爆炸焊接原理形成的复合飞板层。合理使用楔形装药可以使射流切割更加均匀,增强坦克的防护性能,为以后在装药结构上的探索提供了理论依据。  相似文献   

2.
为了研究双层楔形装药反应装甲中线上不同着靶点位置对射流干扰的影响,利用模拟仿真软件LSDYNA-3D对其干扰射流的能力进行评估,分别对侵彻过程中飞板的运动状态、杵体断裂情况和接触后效靶板的瞬时速度、侵彻靶板的深度和开坑等进行分析,并通过试验进行对比分析。研究发现:着靶点在双层楔形装药反应装甲中线顶端区域时,受边界效应影响严重,双层楔形装药反应装甲干扰射流作用不明显,杵体在接触靶板前未断裂,致使靶板被击穿;着靶点在160mm处时,射流侵彻双层楔形装药反应装甲后,杵体断裂时间最早,且被切割成多段并发生明显位移,杵体接触靶板瞬时速度最低,在后效靶板上的侵彻深度最小,抗侵彻效果优于传统双层平板装药。模拟计算与试验测量结果最大误差不超过10%,符合较好。  相似文献   

3.
基于平板装药与聚能射流的作用原理和应对大口径带隔板侵彻能力更强的聚能装药的需求,通过理论分析和数值模拟的方法,对比研究了单层平板装药、双层平行平板装药和多层平行平板装药对聚能射流的干扰能力,发现随着平板装药层数的增加,多层平行平板装药对聚能射流的干扰能力增强。平板装药之间的距离不仅决定了多层平行平板装药对聚能射流的干扰效果,而且决定了反应装甲的尺寸。采用ANSYS/LS-DYNA3D软件再现平板装药与聚能射流的相互作用的过程,综合对比某一时刻聚能射流的剩余速度、剩余动能、后效,优选出最佳的平板装药之间的距离δ=25mm时,不仅保证了多层平行平板装药对聚能射流的干扰效果而且能有效控制反应装甲的尺寸和重量,可为后期新型反应装甲的研制提供参考。  相似文献   

4.
基于爆炸式反应装甲与聚能射流的作用机理,致力于设计出对聚能射流干扰能力更强的新型结构的反应装甲,即多层变角度反应装甲。基于ANSYS/LS-DYNA软件,采用数值模拟的方法分析了不同结构的反应装甲对聚能射流的干扰作用,对比了不同夹角的多层变角度反应装甲对聚能射流的干扰作用,以聚能射流在后效板上留下的侵彻痕迹的尺寸为判定不同夹角的多层变角度反应装甲对聚能射流干扰作用的依据。对比分析结果表明:多层变角度反应装甲对聚能射流的干扰作用明显优于V形反应装甲,多层变角度反应装甲中平板装药之间的夹角α=22°时最有利于提高其对聚能射流的干扰能力。  相似文献   

5.
为了研究V形反应装甲中线上不同弹着点位置对射流干扰的影响,利用三维有限元程序(LS-DYNA)对V形反应装甲靶板的射流侵彻过程进行模拟,并通过实验进行对比分析。结果表明,数值模拟结果与实验结果符合较好。弹着点不同时,V形反应装甲靶板对射流的干扰效果有明显差别,并且随着弹着点与底端距离的增大,射流在后效靶板上的侵彻深度呈先减小后增大的趋势;当弹着点距顶端6.25倍射流直径时,射流在后效靶板上的侵彻深度最小,该点的防护能力最优;顶端的防护能力优于底端。  相似文献   

6.
运用ANSYS/LS_DYNA软件分析了聚能射流对充液结构的毁伤,初步获得了药型罩壁厚和材料等参数对聚能战斗部水下作用的影响特性。药型罩壁厚在0.04Dk~0.06Dk(Dk为装药直径)之间形成的射流对充液防护结构具有较优的侵彻性能;当δ<0.04Dk时,杆流成型结构较差,在水中的动能抗衰减性能较低;δ>0.06Dk时,射流的初始动能低,靶后效果差。药型罩可采用纯铁、紫铜和钽3种材料,其中纯铁射流的侵彻能力最高,钽射流在水中的动能抗衰减性能最好,紫铜射流具有较好的综合性能。  相似文献   

7.
 为实现聚能装药对多层介质的大破孔侵彻,提出了钛合金药型罩聚能装药设计方案。采用实验与数值模拟相结合的方法,对钛合金、低碳钢及紫铜罩聚能装药侵彻多层介质进行了研究,分析了钛合金聚能侵彻体相对于紫铜和低碳钢侵彻体在成型过程中,其动能、头部速度及射流长度等的差异,并对侵彻过程中应力波的传播特性进行了分析。结果表明:相对于紫铜和低碳钢,钛合金罩聚能侵彻体的能量转换率高,所获得的动能大,头尾速度梯度小,外形更为短粗;虽对多层介质侵彻时侵彻深度有所减小,但漏斗坑尺寸明显增大,且平均破孔孔径提高了约20%。  相似文献   

8.
为了进一步提升反应装甲的防护能力,设计了一种新型多三明治结构反应装甲,并得出5种不同尺寸的反应装甲。第1种尺寸的反应装甲在传统反应装甲的中间部位加一层钢板,第2至第5种尺寸的反应装甲在第1种尺寸的基础上进行设计,但反应装甲总厚度均与传统反应装甲相同。采用ANSYS-LSDYNA软件进行数值模拟,与传统结构反应装甲就射流断裂时刻、射流刚接触后效靶板时刻、射流失去干扰时刻以及最终对后效靶板的侵彻结果进行了对比。为了更加直观地反映新结构反应装甲对射流干扰的强度,将5种反应装甲与传统双层反应装甲进行侵彻数据对比。模拟结果表明:A型反应装甲头部射流偏转距离最长;新结构反应装甲对射流的干扰时间均比传统反应装甲长,其中E型反应装甲对射流的干扰时间最长,A型反应装甲防护效果最好;在与传统反应装甲厚度相同的情况下,D型反应装甲的防护效果最好。选用A型、D型和F型反应装甲来做验证实验,结果表明数值模拟结果可靠。  相似文献   

9.
国内外对大法线角下的射流侵彻问题缺乏系统研究。为此,对比分析了Tate模型、Rosenberg模型和可压缩流体力学模型3种跳弹模型,并对大法线角下射流侵彻装甲钢和铝靶进行了实验研究。理论分析表明,可压缩流体力学模型能更准确地预测跳弹角。实验结果显示:大法线角下射流的侵彻深度随法线角的增大而减小,射流的垂直侵彻深度仅为正侵彻深度的10%左右;射流头部速度为6 800m/s时,603装甲钢的跳弹角在6°~7°之间,铝的跳弹角在5°~6°之间。  相似文献   

10.
为提高射流侵彻性能,根据聚能射流装置的射流形成特点,设计了爆炸复合铝铜金属体作为药型罩的聚能射流装置。此装置依据已有的锥角为42°的聚能装药紫铜药型罩改进而来。利用LS-DYNA软件中的MMALE多物质算法,对此装置的射流形成、侵彻金属靶体全过程进行数值模拟。在保持装药量不变的情况下,计算了当铝铜药型罩锥角分别为36°、38°、40°和42°时的射流形成及侵彻过程。结果表明:射流头部速度随着铝铜药型罩锥角的减小而增大;且锥角为38°时射流穿深最大。相比单纯金属铜药型罩情况,射流头部速度提高了13.2%,侵彻深度提高了14.5%。  相似文献   

11.
运用LS-DYNA有限元程序模拟了不同横向飞行速度(150、200、300、400、500m/s)和侵彻角度(30°、45°、60°)情况下聚能战斗部对披挂反应装甲后效靶板的侵彻过程,讨论了射流所受干扰情况及其对后效靶板的侵彻结果。研究结果表明:当侵彻角度一定时,射流对靶板表面的切割长度随速度的增大而增大,且在侵彻角度为30°时增大速率最快;但射流侵彻深度随速度的增大而减小,且在侵彻角度为60°时减小速率最慢。当飞行速度一定时,射流对靶板表面的切割长度和侵彻深度均随侵彻角度的增大而减小,且表面切割长度降幅随速度的增大呈先增大后减小的趋势,在速度为300m/s时,降幅最大,为59.6%;而侵彻深度降幅随速度的增大呈先减小后增大的趋势,在速度为350m/s时,降幅最小,为39.3%。最后通过理论方法分析了数值模拟结果,论证了数值模拟方法的正确性。  相似文献   

12.
为了对比分析Cu-Ni-Al反应聚能射流和惰性Cu聚能射流对45钢靶的宏观侵彻特性和靶板的微观组织特征,分别进行了Cu-Ni-Al和Cu药型罩的侵彻实验,并利用光学显微镜、扫描电镜、能量色散光谱仪和Vickers显微硬度测量系统对回收钢靶进行表征。实验结果表明:Cu-Ni-Al反应射流对45钢的穿深与Cu射流相比明显降低,但其平均入口孔径提高了33.3%。两种聚能射流侵彻作用下钢靶中均存在残余射流区、白色区(马氏体和奥氏体的混合物)和变形区。与Cu射流相比,Cu-Ni-Al反应射流孔壁残余射流区的硬度值提高了34 MPa,孔壁尾部白色区的硬度值增加了95 MPa,其孔壁头部白色区的硬度值降低了28 MPa。两种聚能射流孔壁尾部白色区的硬度值均高于头部。研究结果可为评估反应材料药型罩聚能装药战斗部的毁伤效应提供一定的参考。  相似文献   

13.
针对增强聚能射流的破甲后效问题,设计了等壁平顶锥形铜铝双层复合药型罩装药结构,采用冲击波物理显示欧拉动力学软件SPEED开展复合射流成型及对钢-铝间隔靶侵彻过程的数值模拟,分析内外双层药型罩高度比ε、药型罩锥角α等参数对复合射流成型和间隔靶侵彻性能的影响规律。研究结果表明:复合射流的头部速度随ε增大呈先减小后增加的趋势,在ε约为1/2时,可形成具有相近速度的铜铝同轴复合射流微元,利于铝射流微元与目标相互作用实现后效增强毁伤;且当α在50°~60°范围内时,复合射流中段为集中的铝射流微元,更利于侵彻后的爆炸或爆燃反应。对优化参数的复合药型罩结构数值模拟结果与文献公布的实验结果吻合较好。研究结果对增强后效聚能装药设计具有参考价值。  相似文献   

14.
冲击波影响下的聚能射流侵彻扩孔方程   总被引:1,自引:0,他引:1  
 当聚能射流侵彻速度大于靶板声速时,由于冲击波的产生导致波阵面后材料的状态参数发生改变,影响聚能射流的侵彻扩孔过程,致使波阵面前后不能直接应用伯努利方程求解。在考虑侵彻过程中冲击波影响的基础上,对射流轴向侵彻和径向扩孔的力学特性进行了分析,并对冲击波的传播和衰减进行了假设,着重探讨侵彻速度大于靶板声速时冲击波的影响。针对侵彻速度大于和小于靶板声速两种情况,建立了相应的侵彻模型,提出了一个新的聚能射流侵彻扩孔方程。将该方程与Szendrei-Held模型进行了比较,结果表明,新模型更符合Held等人的实验数据,冲击波对轴向侵彻的影响远小于对径向扩孔的影响。  相似文献   

15.
聚能射流对氧化铝陶瓷靶的侵彻特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 建立了考虑损伤的求解靶板阻力的理论模型,以此来评估陶瓷靶板的抗侵彻能力;数值模拟了长杆弹侵彻氧化铝陶瓷靶的破坏特性,结合实验结果确定了氧化铝陶瓷本构模型中的材料参数。建立了聚能射流侵彻氧化铝陶瓷靶的计算模型,对射流的形成机理及氧化铝陶瓷靶的抗侵彻性能进行研究,讨论了药型罩的几何尺寸对所形成的射流速度及侵彻深度的影响。结果表明:药型罩的锥角和壁厚增大,射流速度减小,壁厚对射流速度梯度的影响较大;同样,药型罩的锥角对侵彻深度也有较大的影响。  相似文献   

16.
大孔径双向聚能射孔弹的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 设计了一种双锥药型罩与双向装药结构相结合的聚能射孔弹模型,通过数值模拟方法研究其射流成型机理,并计算其射流参数。结果显示:双锥药型罩的小锥角部分形成聚能射流,大锥角部分形成翻转弹丸,射流头部和弹丸的速度分别为6 250 m/s和1 620.9 m/s,弹丸长度和平均直径分别为26.1 mm和8.6 mm。结合数值模拟结果,对射流侵彻公式进行了修正,并利用修正公式预测该射孔弹侵彻钢靶的深度,计算结果为69.6 mm。最后,按照该模型进行侵彻实验,实验回收弹丸的长度和平均直径分别为28.1 mm和8.8 mm,侵彻钢靶的深度和孔径分别为70 mm和17 mm。实验表明:数值模拟与理论计算方法相结合是可行的,能够有效地计算射孔弹的射流参数并预测其侵彻深度;该射孔弹侵彻性能优越。  相似文献   

17.
 理论分析高速杆式射流侵彻半无限靶过程时,考虑速度梯度对聚能射流的影响,将射流进行分段计算,得到了射流拉伸后实际碰靶时的微元长度和直径变化。采用伯努利方程和静力学方法,通过对射流形状和速度分布作线性近似,理论分析了高速杆式射流侵彻半无限靶的过程,得到了靶体中的侵彻深度和侵彻孔径与射流长度、速度及直径之间的关系。将模拟结果与实验结果进行对比,结果表明理论分析结果与侵彻实验结果符合较好。  相似文献   

18.
利用ANSYS/LS-DYNA模拟了楔形装药和平板装药对射流的干扰过程,分析了不同楔形角度和装药量对射流的头部速度以及偏转角、杵体速度等数据的影响,并与平板装药的模拟结果对比。结果表明:楔形装甲对射流头部的干扰作用与平板装药相同,但对射流杵体的干扰不同。楔形平板的运动是由板平动和转动组成的二维运动;当楔形角度为正时,楔形装药对射流切割效果较平板装药好,可使射流头部偏转增大,速度减缓,杵体速度减缓,且这种效果随着楔形角度的增加而增加;此外,楔形角度确定后,随着楔形装药量的提高,侵彻位置向楔形上端偏移,接触靶板时间滞后,杵体断裂时间提前,板旋转减弱。  相似文献   

19.
运用LS-DYNA动力学分析软件,对具有不同橡胶夹层厚度的陶瓷/橡胶/钢复合靶在30°和60°倾角下的射流侵彻情况进行了数值模拟。采用聚能装药基准弹,进行了剩余穿深实验,研究了射流侵彻陶瓷/橡胶/钢复合靶后射流速度、靶板变形和剩余穿深,分析了倾角和橡胶夹层厚度对复合靶抗射流侵彻性能的影响机理。结果表明:射流侵彻陶瓷/橡胶/钢复合靶的性能受倾角的影响很大,尤其是在大倾角下影响更为显著;橡胶夹层对射流侵彻性能有一定的影响,但其厚度的变化对射流侵彻性能的影响很小。  相似文献   

20.
为研究贫铀合金应用于聚能药型罩的破甲后效特性,基于贫铀-铌合金药型罩,开展了聚能弹破甲后效实验。实验结果表明,贫铀合金药型罩形成的射流在穿透钢棒后,能形成一个高温、高速且具有一定发散能力的燃烧颗粒束,具有较强的纵火能力。贫铀合金药型罩形成的射流在穿透密闭装甲目标后,目标内部压力无明显变化,正对射流方向位置在0.2s内产生了约15℃的温升,最终靶箱整体温度升高2.5℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号