首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Raman spectroscopy is used to examine the effect of mobile phase composition on the orientation of octadecyl-bonded silica-based reversed-phase liquid chromatographic (RPLC) stationary phase ligands. The effect of ligand bonding density is also investigated. The present experimental set-up utilizes a direct, noninvasive, on-column approach to examine the solvent dependent conformational behavior of the bonded ligands under flow-rate and back pressure conditions similar to those used during conventional RPLC measurements. Neat, single-component, mobile phase solvents including water, acetonitrile, methanol and chloroform are used to investigate the hypothesized collapsing and extension of stationary phase ligands with changes in mobile phase composition. No evidence of phase collapse was observed upon changing the mobile phase composition from an organic to an aqueous content. Also, Raman spectroscopic measurements allowed the differentiation between associated and free acetonitrile solvent.  相似文献   

2.
Summary A chromatographic and thermodynamic study of the compound [4-(allyloxy)benzoyl]-4-methoxyphenyl (ABMP) as a model of a chemically bonded liquid crystal stationary phase for HPLC was undertaken. A number of polycyclic aromatic hydrocarbons (PAHs) and two small solutes, carvone and pulegone, were studied under varying solvent and temperature conditions. Plots of log k vs. % organic in the mobile phase were not completely linear in all cases. The van't Hoff plots revealed at least one phase transition. The enthalpies of solute transfer from the mobile phase to the ABMP phase were determined for several PAHs. All tests indicate that ABMP possess liquid crystal properties when bonded to particulate silica.  相似文献   

3.
以大黄酸为原料,γ-氨丙基三乙氧基硅烷(KH-550)为偶联剂,简便制备了一种新型羧基键合硅胶固定相(RBSP),并用红外光谱、热重分析及元素分析对其结构进行表征.考察了流动相中甲醇含量对键合固定相色谱性能的影响,并以含酸性、中性和碱性化合物的混合物为溶质,评价了RBSP的色谱性能.以甲醇-水为流动相,用C18柱作参比,研究了该键合硅胶作为HPLC固定相对两种大豆异黄酮化合物和几种生物碱基的分离,并对其色谱分离机理进行了初步探讨.实验结果表明,该固定相(RBSP)具有较好的反相色谱性能,同时由于键合相中含有酚羟基及酰胺基团,能为多种溶质提供作用位点,对极性化合物的分离具有明显优势,且分离速度快,可有效用于极性化合物的分离分析.  相似文献   

4.
Summary The temperature-dependent separation of bryostatins by HPLC was examined on an octadecyl bonded stationary phase, using column temperatures between 0 and 40°C and mobile phase temperatures from 0 to 25°C. The retention time and resolution of bryostatins changed drastically and separation improved with decreasing temperature. A column temperature of less than 5°C and a mobile phase temperature of less than 15°C is recommended for a good resolution of bryostatins for routine work.  相似文献   

5.
The high-performance liquid chromatographic behavior of some basic drugs was studied on a n-octadecylphosphonic acid modified magnesia-zirconia (C18PZM) stationary phase. The effect of mobile phase variables such as methanol content, ionic strength, and pH on their chromatographic behavior was investigated. The retention mechanism of basic drugs on the stationary phase was elucidated. The results indicate that both hydrophobic and cation-exchange interactions contribute to solute retention under most chromatographic conditions. The inherent Br?nsted-acid sites and also the adsorbed Lewis base anionic buffer constituents on accessible ZM surface Lewis acid sites play a role in the retention of ionized solutes by cation-exchange interaction. However, especially at high mobile phase pH, the retention of basic drugs depends mainly on hydrophobic interactions between solutes and support. Separations of the basic drugs on the C18PZM phase by a predominantly reversed-phase retention mode were very promising. The mixed-mode retention feature on this phase, as a result of the adsorbed Lewis base anionic buffer constituents acting as sites for cation-exchange, could also be very useful, e.g. for enhancing the chromatographic selectivity of such analytes. The C18PZM seems to be an excellent alternative to silica-based reversed-phase stationary phase for the separation of strongly basic solutes.  相似文献   

6.
Summary LiChrosorb Si100 densely grafted with octadecylmonofunctional reagents and the similar commerical LiChrosorb RP 18 have been studied in RP-HPLC, with water-methanol mobile phases at different temperatures. They exhibit a phase transition revealing two different states of bonded film as we have previously shown on densely grafted C18 or C22 macroporous silicas.The measurement of the capacity factors of the alkane homologous series indicated a discontinuity in the plot (logK, N) at a critical number whose value is dependent on temperature. Two different forms of these curves can be observed above and below the transition, revealing the influence of bonded film state on the retention mechanism.  相似文献   

7.
新型苯基桥键色谱固定相的热力学性质   总被引:1,自引:0,他引:1  
Wu L  Lian D  Zhang Q  Li H 《色谱》2010,28(7):693-696
将制备的球形苯基桥键型杂化介孔色谱固定相与商品化的C18和苯基键合硅胶固定相对比,研究其热力学性质。以稠环芳烃为例,探讨了溶质在固定相和流动相之间的迁移焓变、迁移熵变等热力学参数的变化。结果表明,与两种商品化的固定相不同,实验制备的苯基桥键固定相不存在明显的焓-熵补偿效应,证实新型桥键固定相分离机理是疏水作用、π-π作用、包结作用等协同作用的结果。  相似文献   

8.
The C1 to C3 N-alkyl, N,N-dimethyl, and N-hydroxy analogues of 3,4-methylenedioxyamphetamine (MDA) are identified by high performance liquid chromatographic (HPLC) and spectrometric techniques. The compounds are separated using reversed-phase procedures on C18 stationary phase with an acidic (pH 3) aqueous methanol mobile phase. The mass spectra of the compounds are distinctive and reference spectra are provided. The N-hydroxy derivative is unstable at high temperatures and decomposes to MDA and the oxime of 3,4-methylenedioxyphenyl-2-propanone.  相似文献   

9.
A new bonded liquid crystal stationary phase (2OC12) for high-performance liquid chromatography was studied. It resulted from coupling of LiChrospher Si 100 NH2 and a mesogenic carboxylic acid, 4-(4-(4-(3,4-didoceyloxystyrenyl)phenyl-diazenyl)phenyloxy-methylene) benzoic acid (ILC). ILC was characterized with proton NMR and differential scanning calorimetry, while 2OC12 was characterized by solid state 13C NMR and elemental analysis. 2OC12 surface area was determined by the BET method. The chromatographic behaviour of 2OC12 was investigated under both normal- and reversed-phase conditions. The plots of ln k against 1/T showed transition temperatures at 325 and 337 K. Polyaromatic hydrocarbons (PAHs) were separated using hexane, isooctane or hexane-chloroform. Above the transition temperatures, the bonded material exhibited a liquid crystal-like behaviour: (i) the plate number N was always highest possible, and (ii) the more retained the solute the more elongated it was (anthracene is eluted after phenanthrene, chrysene before tetracene, pentacene after dibenzo-a,h-anthracene). Using acetonitrile/water (60/40), reversed-phase data of aromatic hydrocarbons are similar (highest values of N, better resolution below than during the transitions).  相似文献   

10.
报道在硅胶表面进行固-液相反应合成的3-(氮杂-18-冠-6)丙基键合固定相对金属离子的络合能力和色谱性能,研究了流动相组成、pH值、金属离子对极性二取代苯保留值的影响,探讨色谱分离机理。这种键合相通过对金属离子的络合,显示多种色谱分离机理,对极性二取代苯异构体分离选择性、分析速度均优于对比的C18键合固定相反相色谱。  相似文献   

11.
Summary Using two polycyclyic aromatic hydrocarbons as solutes, a comparison is made between a bonded liquid crystal stationary phase and a conventional polymeric C-18 phase. The bonded nematic liquid crystal phase was the silanized form of 4-[4-(allyloxy)benzoyl-oxy]biphenyl and the polymeric phase was Vydac 201TP. Both phases display shape and planarity selectivity as indicated by the results of the variable temperature and mobile phase composition studies. The slot theory of retention can be used to explain these results. However, the liquid crystal phase is more sensitive to molecular geometry, probably due to its more ordered structure on the surface. Variable temperature experiments which compare retention during both heating and cooling provides additional support for this conclusion. With the polymeric bonded C-18 phase, each solute had identical retention at the same temperature during both the heating and cooling cycles. On the bonded liquid crystal phase, measurable differences in retention were observed at identical temperatures depending on whether the column was heated or cooled. This effect is attributed to a degree of partially reversible disordering which occurs as the column temperature was increased. However, conditioning with the appropriate mobile phase can restore the original retention characteristics of the bonded liquid crystal phase.  相似文献   

12.
合成一种了氨基酸衍生物:4,4′-二苯亚甲基桥联-二[2-(1-咪唑基)-3-苯基丙醇氨基甲酸酯](ImPh-Carb),并将其键合到硅胶上制备了一种新的氨基甲酸酯功能化的离子液体HPLC固定相(ImPh-Carb-Silica)。 利用1H NMR、13C NMR、MS和FTIR对ImPh-Carb进行了表征;通过FTIR和元素分析对ImPh-Carb-Silica固定相进行了表征,根据N含量计算得到ImPh-Carb-Silica的键合量为0.19 mmol/g。 以5种芳烃、5种酚类化合物和4种有机磷农药为分析物,分别在正相和反相色谱模式下对固定相的色谱分离性能进行了评价,同时考察了流动相的变化与溶质保留因子lg k之间的关系。 结果表明,该固定相与溶质分子间存在多重作用力,如疏水、氢键、π-π和偶极-诱导偶极作用等,使其能同时在正相和反相色谱模式下使用;在正相色谱条件下固定相对酚类化合物和有机磷农药表现出较好的分离选择性。  相似文献   

13.
In an effort to gain insight into the relationship between stationary phase solvation and selectivity, the use of short- and medium-chained-length alcohols (methanol, n-propanol, n-butanol, and n-pentanol) as mobile phase modifiers in reversed-phase liquid chromatography (RPLC) was investigated to determine their impact on chromatographic selectivity. A wide range of mobile phase compositions was evaluated because of the large effect exerted by solvent strength on selectivity. Employing a set of six vanillin compounds as retention probes, evidence is presented to support the view that an increase in the hydrophobicity of the organic modifier used in RPLC can increase the selectivity of the C18 alkyl bonded phase while simultaneously decreasing the retention time of the eluting solutes. Thus, we are presented with an interesting paradox: higher selectivity and shorter retention times, which can be attributed to changes in either solvent selectivity and/or stationary phase solvation by the organic modifier.  相似文献   

14.
Micellar liquid chromatography (MLC) remains hindered by reduced chromatographic efficiency compared to reversed phase liquid chromatography (RPLC) using hydro-organic mobile phases. The reduced efficiency has been partially explained by the adsorption of surfactant monomers onto the stationary phase, resulting in a slow mass transfer of the analyte within the interfacial region of the mobile phase and stationary phase. Using an array of 12 columns, the effects of various bonded stationary phases and silica pore sizes, including large-pore short alkyl chain, non-porous, superficially porous and perfluorinated, were evaluated to determine their impact on efficiency in MLC. Additionally, each stationary phase was evaluated using 1-propanol and 1-butanol as separate micellar mobile phase alcohol additives, with several columns also evaluated using 1-pentanol. A simplified equation for calculation of A' and C' terms from reduced plate height (h) versus reduced velocity (nu) plots was used to compare the efficiency data obtained with the different columns and mobile phases. Analyte diffusion coefficients needed for the h versus nu plots were determined by the Taylor-Aris dispersion technique. The use of a short alkyl chain, wide-pore silica column, specifically, Nucleosil C4, 1000A, was shown to have the most improved efficiency when using a micellar mobile phase compared to a hydro-organic mobile phase for all columns evaluated. The use of 1-propanol was also shown to provide improved efficiency over 1-butanol or 1-pentanol in most cases. In a second series of experiments, column temperatures were varied from 40 to 70 degrees C to determine the effect of temperature on efficiency for a subset of the stationary phases. Efficiency improvements ranging from 9% for a Chromegabond C8 column to 58% for a Zorbax ODS column were observed over the temperature range. Based on these observed improvements, higher column temperatures may often yield significant gains in column efficiency, assuming the column is thermally stable.  相似文献   

15.
Zhao Q  Philpott RT  Oakes TD  Conte ED 《The Analyst》2005,130(5):750-754
An application that highlights the usefulness of a solid phase extraction sorbent having a removable surfactant "stationary phase" is introduced. Polyaromatic hydrocarbons (PAHs) efficiently trap on commercially available non-polar sorbents (i.e., C(18) silica). However, solvents that are necessary to break strong hydrophobic interactions between the analyte and sorbent are harmful and incompatible for direct introduction into a reversed phase liquid chromatographic setup. In the presented approach, the entire "stationary phase"-analyte association is removed, resulting in very efficient elutions with a final extract that is mild and reversed phase liquid chromatographic compatible. Commercial C(18) silica was placed adjacent to this sorbent to provide more efficient trapping of less hydrophobic PAHs. PAHs were preconcentrated from river water and were determined using fluorescence detection coupled to HPLC. Detection limits for all PAHs examined were in the sub [micro sign]g L(-1) level.  相似文献   

16.
Berthod A  Schmitt N 《Talanta》1993,40(10):1489-1498
Countercurrent chromatography (CCC) is a separation technique in which the stationary phase is a liquid. The liquid stationary phase retention is a critical problem in CCC. The retention of 18 organic solvents in a hydrodynamic CCC apparatus was measured with an aqueous mobile phase, the centrifuge spin rate and the mobile phase flow rate being constant, 800 rpm and 2 ml/min, respectively. Conversely, water retention was measured when the 18 solvents were the mobile phases. A direct relationship between the liquid stationary phase retention and the phase density difference was found. The liquid phase density difference is the most important parameter for stationary phase retention in a hydrodynamic CCC apparatus with coiled tubes. The chromatographic retention of formanilide was measured in biphasic systems and expressed as the formanilide partition coefficient. It is shown that the partition coefficient correlates with the Reichardt polarity index of the organic solvent when the liquid stationary phase retention volume does not.  相似文献   

17.
Summary The retention behavior of a set of polycyclic aromatic hydrocarbons in supercritical fluid chromatography have been studied on a chemically bonded stationary phase based upon a side chain liquid crystalline polymer (LCP) with carbon dioxide-based mobile phase. The effects of the mobile phase pressure, column temperature and amount of mobile phase organic modifier have been investigated in order to detect a possible structural change in the liquid crystal polymer linked to the silica support. The influence of these factors on the selectivity coefficients has also been studied. Two distinctive behaviors with temperature are noted at low pressure on the one hand and at higher pressure on the other. This change in behavior is based on the density of the supercritical CO2 and the PAH volatility rather than on any specific stationary phase structural change. Both lower mobile phase pressure and amount of mobile phase modifier are required to obtain better selectivities. Better planarity recognition is observed in SFC than in HPLC with these new bonded liquid crystal stationary phases. The bonded liquid crystal phase is only weakly affected by the addition of organic modifier in the supercritical CO2.  相似文献   

18.
A direct liquid chromatography method was developed for the diastereo- and enantioselective analysis of a C3,C4-substituted beta-lactamic hypolipodemic agent (SCH 48461) and its stereoisomers on two commercially available amylose-based chiral stationary phases (CSPs), namely, Chiralpak AS and Chiralpak AD. The mobile phase composition (type and content of alcoholic modifier) was considered to achieve baseline resolutions in a single chromatographic run. In order to investigate the influence of molecular flexibility on chiral recognition process, beta-lactams were ring-opened and converted into beta-amino esters derivatives. Thermodynamic parameters associated with adsorption equilibria between acyclic and cyclic stereoisomers and CSPs were calculated from chromatographic runs at various temperatures.  相似文献   

19.
Xiao YX  Xiao XZ  Feng YQ  Wang ZH  Da SL 《Talanta》2002,56(6):1141-1151
The high-performance liquid chromatographic behavior of some sulfonamides and quinolones was studied on a p-tert-butyl-calix[6]arene-bonded silica gel stationary phase. The effect of mobile phase variables such as methanol content, ionic strength and pH on their chromatographic behavior was investigated. The retention behavior of sulfonamides on the stationary phase was compared with that on both Zorbax C18-bonded silica gel and γ-(ethylenediamino)propyltriethoxylsilane-bonded silica gel (diamino-bonded phase). The retention mechanism of sulfonamides and quinolones on the stationary phase was also discussed. The results indicate that the stationary phase behaves as a reversed-phase packing and its separation selectivity is much better than that of not only Zorbax C18 phase but also diamino-bonded phase. Some sulfonamides and quinolones were separated on the stationary phase, but the separation of sulfonamides is far more successful.  相似文献   

20.
Cyanobiphenyl-mesogened liquid crystalline polymer is bonded on silica by surface-initiated atom transfer radical polymerization and is used as the stationary phase for liquid chromatography. Various instrumental analyses such as elemental analysis, X-ray photoelectron spectroscopy and differential scanning calorimetry were used for its characterization. The stationary phase exhibits multiple characteristics of low hydrophobicity, low hydrophobic selectivity, polarity recognition and shape selectivity in the separation of polyaromatic hydrocarbons and polar neural aromatic compounds. Temperature and mobile phase composition were confirmed to have effects on the chromatographic behavior. Isomers of polyaromatic hydrocarbons and carotenes are well separated on the stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号