首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
氮氧化物(NO_x,主要包括NO和NO_2)是主要的大气污染物之一,造成酸雨,光化学烟雾和臭氧层破坏等环境问题,甚至直接危害人体健康.化石燃料燃烧和汽车尾气排放是NO_x的主要来源,严格控制火力发电厂,大型锅炉,汽车尾气等污染源中NO_x的排放刻不容缓.以NH_3为还原剂选择性催化还原NO_x(NH_3-SCR)是目前公认的最有效的NO_x脱除技术,然而在催化NO_x还原为N_2的过程中往往伴随着副产物N_2O的生成,降低了催化剂的选择性,造成温室气体效应和破坏臭氧层等环境问题.因此充分理解NH_3-SCR过程中N_2O的形成机理对于抑制N_2O的产生、提高催化剂的选择性十分重要.本文将高度分散的Pd纳米团簇负载在Ce O_2纳米棒上制成Pd/Ce O_2催化剂,结合NH_3-TPD, NO-TPD和原位傅里叶转换红外光谱等表征手段研究了无氧条件下该催化剂上利用NH_3催化还原NO过程中N_2O的产生路径.结果表明, N_2O的形成途径与反应温度和反应气体的浓度相关.当反应气体中NH_3含量大于化学计量比时,在反应温度低于200°C时,由NH_3活化产生的吸附态H·自由基与催化剂表面吸附的NO反应先生成中间产物HON,两个HON分子进一步反应生成N_2O;过量的吸附态的H·自由基也可以与HON反应生成N_2,所以低温下(200°C)随着反应气氛中NH_3的增加,解离生成的H·也随之增加,促进反应向着生成N_2的方向进行,从而抑制了N_2O的产生.随着反应温度增加, NH_3解离产生的H·被CeO_2表面的O捕获形成羟基,中间产物HON的生成被切断,从而阻断了N_2O的生成.同时由于体系中含有大量的NH_3,吸附态的NO会优先与活化态的NH_3物种反应生成N_2,阻碍了NO解离生成N_2O这一过程的发生,因此NH_3过量情况下在高温下观察不到N_2O的产生,可获得100%的N_2选择性.但是当反应气体中的NH_3含量不足时,即体系中含有过量的NO,当反应温度高于250°C, NO可在催化剂表面解离生成吸附态的N·自由基和O·自由基, N·自由基可进一步与吸附态的NO反应生成N_2O, NO的解离是N_2O生成的速控步,还原性吸附物种对O·自由基的捕捉将有利于N_2O的生成.当反应温度介于200–250°C, NH_3解离产生的H·自由基既可以与NO结合生成HON中间产物,又能被CeO_2表面的O捕获形成羟基,两个反应之间存在竞争,此时N_2O产生与反应气体浓度之间的关系不再呈单调变化.  相似文献   

2.
在分子束-气装置上测量了Sn+N_2O和Sn+O_2反应的发光光谱,得到了压力为10~(-2)~10(-4)乇时两个反应的发光光谱随反应压力的变化,结果表明:Sn+N_2O反应生成的SnOa~(3∑)态主要是由其它电子态经碰撞而布居的。实验用化学发光方法测得了Sn+N_2O反应的总碰撞截面为32A~2,说明发光态是由Sn(~3P_2)+N_2O反应直接产生的。  相似文献   

3.
在分子束-气装置上测量了Sn+N_2O和Sn+O_2反应的发光光谱, 得到了压力为10~(-2)~10~(-4)乇时两个反应的发光光谱随反应压力的变化, 结果表明: Sn+N_2O反应生成的SnOa~(3∑)态主要是由其它电子态经碰撞而布居的。实验用化学发光方法测得了Sn+N_2O反应的总碰撞截面为0.32 nm, 说明发光态是由Sn(~3P_2)+N_2O反应直接产生的。  相似文献   

4.
CO催化还原NO是发生在汽车尾气净化催化剂中的一个重要化学反应.CeO_2容易发生氧化还原反应CeO_2?CeO_2-x+(x/2)O_2而具有氧储存/释放作用,可以有效地促进CO氧化,因而CeO_2作为储氧材料和催化助剂被广泛应用于汽车催化剂中.在过渡金属元素中,铑对NO的解离活性最高,是目前汽车三效催化剂中最为重要的还原性活性组分.目前,有关Rh-CeO_2基催化剂表面CO还原NO的文献仅关注催化反应活性和N_2O选择性,对CO还原NO反应机理的理解还不够深入准确--,无法为轻型汽油车NH_3排放控制提供正确有用的理论基础.NH_3排放至大气中会以NH_4+形式与SO_24和NO_3离子结合,导致二次颗粒物污染,因此,研究CO还原NO反应中NH_3生成机理对轻型汽油车NH_3排放控制具有非常重要的理论意义.我们研究组强调了CO催化还原NO反应的表面羟基介导NH_3生成问题,并通过原位漫反射傅里叶变换红外光谱(in-situ DRIFTS),傅里叶变换红外光谱(FT-IR),程序升温还原/氧化(TPR/TPO)等现代分析表征技术深入研究了CO还原NO反应机理,并首次提出了催化剂表面"羟基脱氢"反应的NH_3生成机理.研究发现,Rh-CeO_2催化剂表面CO还原NO反应的NH_3选择性最高可达9.7%,其反应表观活化能仅为36 kJ/mol,in-situ DRIFTS,FT-IR和NO-TPO测试结果表明,NH_3的生成可归因于催化剂表面"羟基脱氢"反应,即CO与催化剂表面端位羟基和桥式羟基发生"水煤气转化"反应生成H_2,反应产生的H_2还原NO生成NH_3;CeO_2中非骨架铈双羟基化形成的类氢氧化铈物种则会直接与NO发生脱氢反应生成NH_3,但需要更高的反应温度.值得注意的是,当反应气中额外通入5%水蒸气时,其反应表观活化能提高了21 kJ/mol(同比增加58.3%),更重要的是NH_3选择性明显提高,最高可达25.3%(同比增加160.8%),FT-IR测试结果表明,这是由于水蒸气作用促使催化剂表面羟基化,表面活性氢源得以不断补充.这从动力学角度促进了端位羟基和桥式羟基的"水煤气转化"反应而提高NH_3选择性.同时,对比NO/H_2,CO/NO和CO/NO/H_2O反应的NH_3生成浓度,我们还发现,H_2O分子与NO的竞争吸附会抑制未解离吸附的NH_3进一步还原NO,减少反应生成NH_3的消耗,促使更多生成的NH_3从催化剂表面脱附至气相中,这也是水蒸气导致NH_3选择性明显增加的重要原因.以上结果清晰地表明了催化剂表面"羟基脱氢"作用和水蒸气分子与NO的竞争吸附行为对CO还原NO反应中NH_3生成的重要影响.  相似文献   

5.
在工业锅炉烟气处理领域,由于锅炉容量低,烟气温度往往无法满足传统选择性催化还原(SCR)所需温度窗口.工业锅炉烟气成分的复杂性也给氮氧化物治理带来了严峻考验.臭氧深度氧化NO结合湿法洗涤同时脱硫脱硝技术具有独特的应用优势.传统臭氧氧化技术中,NO被臭氧氧化为NO_2,进而在脱硫塔中实现一体化脱硫脱硝.但由于NO_2溶解度相对较低,需要在脱硫浆液中加入添加剂提高脱硝效率,造成运行成本增加.NO经臭氧深度氧化后,NO_2进一步转化为溶解度高的N_2O_5,传统脱硫石膏浆液即可实现高效吸收N_2O_5,从而有效提高氮氧化物吸收效率.但由于N_2O_5生成反应速率低,深度氧化存在臭氧投入量大、反应时间长及臭氧残留多的缺点.臭氧耦合催化剂深度氧化NO可有效解决以上问题.首先,本文采用溶胶-凝胶法合成一系列单金属氧化物(Mn,Co,Ce,Fe,Cu,Cr)作为臭氧深度氧化NO的催化剂.结果发现锰氧化物表现出最高的催化活性,在70 ℃下,O_3/NO摩尔比为2.0时经过0.12 s的反应时间催化剂即可实现80%以上的转化效率.但根据N_2O_5生成的总包反应(2NO+3O_3=N_2O_5+3O_2)可以看出,O_3/NO摩尔比为1.5时即可实现N_2O_5的完全转化.由于催化臭氧氧化反应温度较低,中间产物在催化剂表面聚集,占据大量活性位,进而导致无法实现1.5摩尔比的高效转化.通过采用球形氧化铝作为载体,避免粉末状催化剂紧凑型布置,增加换热面积,可有效降低催化剂表面中间产物聚集;同时延长了气体与催化剂的接触时间,提高反应效率.在球形氧化铝载体上负载锰基双金属氧化物(Ce-Mn,Fe-M,Cr-Mn,Cu-Mn和Co-Mn),在初始NO浓度为410 mg/m~3,反应温度100 ℃,O_3/NO摩尔比1.5,催化反应时间0.12 s的工况下,催化剂最终实现95%(Fe-Mn)和88%(Ce-Mn)的转化效率,剩余NO和NO_2的浓度分别低于20 mg/m~3(Fe-Mn)和50 mg/m~3(Ce-Mn),臭氧残留浓度低于25 mg/m~3.同负载单一锰氧化物(83%转化率)相比,双金属氧化物进一步提高了N_2O_5生成效率.因此,臭氧耦合催化剂深度氧化NO结合湿法吸收在工业锅炉超低排放(NO_x50 mg/m~3)领域具有广泛应用前景.通过XRD、氮气吸附、H2-TPR和XPS等手段研究了催化剂的晶体结构、孔结构参数、氧化还原性能和表面原子价态.催化臭氧深度氧化NO主要与催化剂对臭氧的分解性能和对NO的氧化性能有关.较大的比表面积和孔容有利于催化剂的吸附.氧空位有利于臭氧的吸附和分解.Mn~(4+)和Mn~(3+)的均衡分布既有利于NO的吸附氧化又有利于臭氧的吸附分解,最终提高了N_2O_5生成效率.  相似文献   

6.
研究了NH_4Cl(s)焙烧氯化Pr_2O_3(s)制备PrCl_3(s)的热力学可行性、反应过程、适宜条件和动力学.结果表明:NH_4Cl(s)焙烧氯化Pr_2O_3(s)制备PrCl_3(s)在热力学上是可行的;氯化反应的过程为NH_4Cl(s)先与Pr_2O_3(s)生成2NH_4Cl·PrCl_3(s),然后NH_4Cl·PrCl_3(s)渐渐分解为PrCl_3(s);氯化反应的起始温度为457.35 K,497 K时反应进行完全;T≥643 K时PrCl_3(s)开始水解为Pr OCl(s);氯化焙烧温度理论上应控制在T≤643 K.制备PrCl_3(s)的适宜条件为n(NH_4Cl)∶n(Pr_2O_3)=12∶1、T=(623±10)K和t=40 min,氯化率为100%;氯化反应动力学符合Bagdasarrym模型,反应进度遵从Erofeev方程,氯化反应的表观活化能48.246 k J·mol~(-1),频率因子A_0为2.28×10~3,反应过程限制环节是界面化学反应控制.  相似文献   

7.
在铈钛基NH_3-SCR催化材料中,改性元素对催化材料的酸性位和氧化还原性能的影响较大。本文采用过量浸渍法分别制备了CeO_2-TiO_2(CeTi)和CeO_2/WO_3-TiO_2(CeWTi)催化剂,研究了CeWTi催化材料结构、酸性位及氧化还原性能对NH_3-NO/NO_2 SCR反应性能的影响.结果发现,CeTi和CeWTi样品均有较优异的NH_3-NO/NO_2 SCR催化性能,后者略高.WO_3的加入增加了催化材料的表面酸性,对其氧化还原性能影响不大.通过对反应中间物种NH_4NO_3的研究,发现NH_4NO_3的分解主要与氧化还原性能相关,而NO还原NH_4NO_3的反应需要氧化还原能力和酸性位共同作用,即在氧化还原性能差异不大的条件下,酸性对该反应起到重要作用.而该反应也是NH_3-NO/NO_2 SCR的限速步骤,这是CeWTi催化材料活性高于CeTi催化材料的原因.同时,为了获得NH_3-NO/NO_2 SCR反应的高活性,NO_2:NO比例宜为1:1.然而现实情况中,预氧化催化材料的氧化活性、NO_x浓度、温度等变量使得准确控制NO_2的比例较难,因此,深入了解NO_2浓度对NH_3–NO/NO_2 SCR反应的影响至关重要.本文探讨NO_2:NO的比例、O_2浓度等对NH_3-NO/NO_2 SCR反应性能的影响;并研究了不同NO_2含量条件下NH_3-NO/NO_2 SCR反应网络.通过分析CeWTi材料上NH_3-NO/NO_2 SCR反应网络可知,当NO与NO_2比例为1:1时,NH_3-SCR催化活性最高,并以快速SCR形式进行;当NO与NO_2比例为1:1消耗完全之后,剩余的NO或NO_2各自独立以标准或慢速SCR进行,不影响其本来的反应活性.催化材料的标准SCR、快速SCR和慢速SCR均取决于材料表面酸度和氧化还原性能,但快速SCR和慢速SCR对材料这两方面性能的要求相对较低.同时O_2并不参与快速和慢速SCR,而NO_2可以取代O_2作为SCR反应中主要的氧化剂,氧化Ce~(4+)为Ce~(3+),甚至比O_2和NO再氧化活性位的能力更强,保持催化材料的高催化活性.低温条件时,慢速SCR和快速SCR反应均在材料表面生成硝酸铵中间物种,但由于慢速SCR气氛中缺乏NO将硝酸铵还原,进而引发快速SCR反应,因此材料表面快速SCR的NO_x转化率要高于慢速SCR反应;高温条件下,由于硝酸铵容易热分解,导致硝酸铵的抑制效应不太明显.NH_4NO_3分解是NO_2含量升高后N2O的形成的主要途径  相似文献   

8.
采用液相沉淀法制备了Co_3O_4催化剂,并对其进行还原-氧化预处理制得Co_3O_4-RO。通过XRD、N_2-physisorption、Raman、H_2-TPR、XPS和O_2-TPD等技术对催化剂进行表征,在连续流动微反应装置上考察了催化剂催化分解N_2O性能。结果表明,经过还原-氧化预处理,与Co_3O_4催化剂相比,Co_3O_4-RO结晶度变差,晶粒粒径减小,尤其是尖晶石结构重构过程削弱了Co-O键,增强了催化剂表面的氧物种脱附能力,降低了催化分解N_2O反应的活化能,因而显著提高了催化剂的催化活性。同时,Co_3O_4-RO对原料气中的O_22%(体积分数)和H_2O 2. 3%(体积分数)表现出较强的耐受性。  相似文献   

9.
石墨相的氮化碳(g-C_3N_4)已被广泛用于光催化、水分解、光子检测器、电池、以及光电阴极.与其他光催化材料相比,g-C_3N_4具有价格低廉,易制备,无毒无污染等优点.此外,C_3N_4具有适宜的带隙(2.7 eV),能有效地吸收可见光.有关C_3N_4的光催化研究很多,但是其降解效率受限于电子空穴对的快速复合.因此,为了提高C_3N_4光催化反应效率,需要对其进行改性.磁铁矿(Fe_3O_4)广泛用于光催化和芬顿/光-芬顿反应.Fe_3O_4晶体具有反式尖晶石结构,其中Fe~(2+)和Fe~(3+)同时存在.研究表明,磁铁矿在酸性条件下催化效果显著,然而,它的比表面积小,随着反应时间的推移,铁离子会溶出,不利于有机物降解反应.因此,近来许多研究着重于磁铁矿复合物的制备,以提高磁铁矿的稳定性及催化性能.本文通过惰性氛围高温焙烧三聚氰胺制备了g-C_3N_4,再通过氯化铁和乙酸钠在乙醇中于180°C溶剂热反应,制备Fe_3O_4纳米粒子,最后通过静电自组装过程制备出Fe_3O_4/g-C_3N_4纳米复合材料.利用X射线衍射(XRD),扫描电子显微镜(SEM)及X射线光电子光谱(XPS)等手段验证其组成和结构.XRD结果表明,Fe_3O_4/g-C_3N_4复合材料中可以清晰看到Fe_3O_4和g-C_3N_4的衍射峰,说明这两种材料的晶相得以保持.SEM和TEM结果表明,Fe_3O_4纳米颗粒很好地附着在g-C_3N_4薄片上.XPS结果表明,氮化碳中存在典型的三种N峰;此外还存在铁的两种价态.光-芬顿活性测试中,相同条件下,Fe_3O_4/g-C_3N_4在60 min内将罗丹明B(RhB)几乎降解完全,而单组份的Fe_3O_4或g-C_3N_4对RhB的降解小于50%.可见,复合后的Fe_3O_4/g-C_3N_4光催化性能得到很大提升.单g-C_3N_4本身由于快速的电子空穴复合以及对双氧水的弱亲和力,因而对Rh B降解效果差.单独的Fe_3O_4由于在中性或者碱性条件下反而会抑制光催化芬顿活性.对于制备的Fe_3O_4/g-C_3N_4复合材料,具有以下优点:(1)电子在Fe~(3+)和g-C_3N_4的LUMO轨道上的转移降低了电子-空穴对的复合;(2)Fe_3O_4均匀分布在g-C_3N_4上,对于H_2O_2的吸附提供了有利的高比表面积;(3)Fe_3O_4和g-C_3N_4之间的界面相互作用使得Fe_3O_4的稳定性提高.通过降解RhB的动力学研究,得到反应速率为0.02 min~(–1),属准一级反应.分析检测结果表明,光-芬顿反应后,RhB分子被彻底矿化降解,没有中间产物生成,最终降解为CO_2和水.同时,通过对辣根过氧化物酶(HRP)模拟催化进行测试,以3,3',5,5'-四甲基联苯胺盐酸盐(TMB)作为基质,同时添加双氧水和Fe_3O_4/g-C_3N_4,在pH值为4.5条件下,TMB可以被有效氧化.实验表明,Fe_3O_4/g-C_3N_4添加量为25 mg/ml时,对TMB氧化性能最佳.复合催化剂还用于多巴胺的催化氧化反应.结果表明,多巴胺的氧化反应速率常数为1.21 min~(–1),属一级动力学反应.总之,复合材料提高了Rh B的光催化降解活性和稳定性;对TMB和HRP亲和性好,表现出高的类过氧化酶反应活性;有效的多巴胺氧化反应表明其有望用于生物基氧化反应中.实验结果表明,本文发展的Fe_3O_4/g-C_3N_4复合材料为其他类型复合材料的制备与应用提供了新的思路.  相似文献   

10.
近年来,氨-选择催化还原(NH_3-SCR)技术被公认为是控制燃煤烟气和柴油车尾气氮氧化物(NO_x)排放的最有效手段之一.V_2O_5-WO_3/TiO_2和V_2O_5-MoO_3/TiO_2催化剂在300-400°C范围内表现出优异的脱硝性能和抗H_2O和SO_2中毒性能,因而被广泛用于NH_3-SCR过程.然而,钒基催化剂存在一些缺点,如氧化SO_2到SO_3的活性较高、高温下将部分NH_3非选择性地氧化成N_2O、V_2O_5具有生物毒性等.因此,非钒基脱硝催化剂的研制引起人们越来越多的关注.二氧化铈(CeO_2)因具有氧化还原性能优异、储/释氧能力强和Ce~(3+)/Ce~(4+)转换容易等优点而广泛用于NH_3-SCR反应.然而,单纯CeO_2的脱硝性能并不理想.研究表明,将CeO_2制备成铈基复合金属氧化物催化剂和负载型铈基催化剂可显著提高其在NH_3-SCR反应中的催化性能.尤其是负载型铈基催化剂由于催化性能优异、比表面积大、热稳定性高及活性组分用量少而成为研究热点.众所周知,对于负载型金属氧化物催化剂,载体并不只是惰性材料,它会显著影响表面负载组分的物理化学性质和催化性能.因此,关于载体与组分间相互作用的研究常见诸报道.但是,对于负载型铈基催化剂,具有不同晶相结构的载体对其理化性质和NH_3-SCR催化性能的影响规律尚不明晰.此外,SiO_2,γ-Al_2O_3,ZrO_2和TiO_2是工业上常用的四种催化剂载体,它们具有不同的晶相结构和应用场合,究竟哪一个最适合作为负载型铈基催化剂的载体用于NH_3-SCR反应尚无定论.因此,为了阐明负载型铈基催化剂在NH_3-SCR反应中的载体效应,筛选出最佳的催化剂载体,我们首先采用溶胶-凝胶法和沉淀法合成了SiO_2,γ-Al_2O_3,ZrO_2和TiO_2四个载体,再通过浸渍法制备了一系列负载型铈基催化剂(CeO_2/SiO_2,CeO_2/γ-Al_2O_3,CeO_2/ZrO_2和CeO_2/TiO_2)用于NH_3-SCR反应.并借助于X射线衍射(XRD)、拉曼光谱(Raman)、比表面积测定(BET)、X射线光电子能谱(XPS)、氢气-程序升温还原(H_2-TPR)以及氨气-程序升温脱附(NH_3-TPD)等表征手段对上述载体和催化剂进行了较为全面的分析.研究结果表明,这些负载型铈基催化剂的理化性质和脱硝性能强烈地依赖于催化剂载体.首先,CeO_2/γ-Al_2O_3催化剂的表面Ce3+含量明显大于CeO_2/SiO_2,CeO_2/ZrO_2和CeO_2/TiO_2催化剂,有利于氧空位的产生以促进NO分子的解离,进而导致优异的NH_3-SCR反应性能.其次,CeO_2/γ-Al_2O_3催化剂具有最佳的还原性能,有利于NO氧化为NO_2,进而通过"快速NH_3-SCR"途径提升其催化性能.再者,CeO_2/γ-Al_2O_3催化剂表面酸性位最多,能够促进反应物NH_3分子的吸附与活化,从而提高脱硝性能.最后,CeO_2/γ-Al_2O_3催化剂在H_2O和SO_2存在的条件下同样表现出最佳的催化性能,表明其有望用于实际燃煤烟气脱硝.  相似文献   

11.
铈降低在硫酸溶液中生长的阳极Pb(II)氧化物膜的电阻的研究   总被引:11,自引:1,他引:10  
应用电化学阻抗频谱法、线性电位扫描法和光电流技术研究了在4.5 mol· dm~(-3) H_2SO_4溶液中Pb-1%(at.)Ce(简称Pb-1Ce)合金在0.9 V (vs. Hg/Hg_2SO_4电极)生长的阳极Pb(II)氧化物膜的电阻较纯铅的低的原因。实验结 果表明,Ce阻抑阳极Pb(II)氧化物膜的生长并增加其孔率,从而降低其电阻。  相似文献   

12.
在-20℃~85℃的范围内系统地研究了温度对贮氢合金MINi~3~.~7~5Co~0~.~6~5Mn~0~.~4Al~0~.~2动力学性能的影响。结果表明:该贮氢合金电极的电化学反应电阻R~t,欧姆内阻R~0,阴极极化过电位,阳极极化过电位,阳极极化过程中的电化学反应过电位η~a和浓差极化过电位η~c均随温度的升高而减小,该电极的交换电流密度i~0,对称因子β和电极中氢的扩散系数D随温度的升高而增大。当放电电流密度较低时,电化学反应是整个电极过程的速度控制步骤;当放电电流密度较高时,氢的扩散是整个电极过程的速度控制步骤;在中等放电电流密度下,电极过程由电化学过程和氢的扩散过程混合控制。该电极中电化学反应过程和氢扩散过程的活化能分别为28.1kJ.mol^-^1和19.9kJ.mol^-^1。  相似文献   

13.
含50-100at%Pd的Ce-Pd系相图   总被引:1,自引:0,他引:1  
张康侯  陈藜莉 《化学学报》1989,47(6):592-595
本文通过X射线衍射实验证实了CePd5化合物的结构, 进一步研究了含50-100at%Pd的Ce-Pd系相图, 在750℃以上含50-100at%Pd的Ce-Pd系相图中共有5个中间化合物:CePd5, CePd3, Ce2Pd3, Ce3Pd4和CePd。  相似文献   

14.
陶瓷基钯银合金膜制备技术及性能研究   总被引:1,自引:0,他引:1  
报道采用浆料涂敷与化学镀相结合法在陶瓷支撑上沉积钯银合金膜,采用浆料涂敷法,将含钯银的浆料涂敷在支撑体上,干燥后热分解,使支撑体表面沉积部分钯银。然后,采用化学镀在50℃下沉积钯银膜,热处理后,得到表面较光洁、厚度约为3μm、银含量为23%(原子百分含量)、合金化较完全的钯银合金膜,该膜在压差为0.1MPa,温度为300℃时的渗氢通量达45cm^3(STP)/(cm^2·min),分离因子达500,研究了钯银合金膜中银含量随热处理温度的变化规律,由实验结果发现,银逐渐向表面扩散,并在一定的温度条件达到基本平衡。  相似文献   

15.
邓景发  朱效中  董树忠  庞燕婉 《化学学报》1984,42(11):1133-1138
用x射线衍射、磁性测量、流动法催化活性测定和X射线光电子能谱等方法,研究了一系列Ag-Pd合金的催化性质、磁性质和价电子状态.当合金中Pd的原子百分含量小于40%时,甲醇氧化脱氢反应的主要产物为甲醛;大于40%时,主要产物变为CO和H_2;与此同时,合金由逆磁性变为顺磁性,Fermi面处的能级密度迅速增加,合金中Pd的d带宽度和不对称性也发生相应的变化,结果表明,Ag-Pd合金的催化性质和磁性质与价带电子状态密切相关.  相似文献   

16.
王怀明  邓景发 《化学学报》1993,51(10):950-954
本文运用UPS、超高真空程序升温反应谱(TPRS)研究了氧和甲醇在银钯合金上的吸附和反应。实验结果表明, 合金表面存在两种分别与Ag和Pd原子有关的活性位; 少量钯原子的存在, 一方面提供了甲醇分解反应的活性中心, 另一方面通过与银之间的电子相互作用, 削弱了氧与银的结合, 增强了表面吸附氧的反应活性, 从而改变了甲醇氧化反应的选择性。  相似文献   

17.
镍-磷非晶合金超细微粒的制备和物性研究   总被引:8,自引:0,他引:8  
沈俭一  胡征  张黎峰  陈懿 《化学学报》1992,50(6):566-570
水溶液中用次亚磷酸钠还原氯化镍制得了纯净的镍-磷非晶合金超细微粒。考察了一些反应条件如反应时间、添加剂和反应系统的初始pH值等对目的产物收率和物性的影响。对产物的基本物性进行了表征。在反应系统初始pH值为11时, 可以制得平均粒度约150nm, 元素分布和拓扑结构相对均匀的镍-磷非晶合金超细微粒。  相似文献   

18.
首次用化学还原法制备了非晶态Ni-W-P合金微粒。应用X射线衍射(XRD)、差热分析(DSC)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等方法对该微粒进行了表征。考察了该微粒催化环戊二烯加氢的活性, 并与Ni0P非晶态合金对比, 发现少量的W的加入改变了Ni-P的加氢活性。  相似文献   

19.
超细非晶镍合金的化学制备及类金属元素对性质的影响   总被引:8,自引:0,他引:8  
沈俭一  张庆红  李智渝  陈懿 《化学学报》1995,53(12):1168-1172
常温下分别使用KBH4和NaH2PO2在水溶液中还原Ni^2^+制得了Ni65B35和Ni89P11超细非晶合金(UFAAP), 同时使用KBH4和NaH2PO2还原Ni^2^+制得了Ni73P13B14UFAAP. Ni-P的粒径较大, 约为110nm, Ni-B的粒径较小, 约为20nm,Ni-P-B的粒径居其之间, 约为40nm。XPS表明, Ni-P间的相互作用强于Ni-B间的相互作用, Ni-P-B中P的电子状态与Ni-P中的相似。Ni-P-B比Ni-P的比表面积高得多,Ni-P-B比Ni-B和Ni-P具有更好的非晶态稳定性, 在573K热处理, 它的非晶态保持完好。晶化结果也表明Ni-P-B中Ni-P间的相互作用比Ni-B间的强。  相似文献   

20.
电沉积非晶态镍磷合金的研究   总被引:2,自引:0,他引:2  
本文用电化学方法, X射线衍射及电子能谱方法研究了阴极恒电位沉积非晶态镍磷合金镀层,实验结果表明,影响镍磷合金非晶结构的主要因素是镀层中的磷含量,当磷含量大于9%时,镀层具有良好的非晶结构,镀层中镍和磷主要以元素态形式存在,磷的析出具有诱导共析特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号