首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文分别通过牺牲模板法与热聚合法,制备出Fe_3O_4纳米球与g-C_3N_4。再采用超声辅助液相剥离法将g-C_3N_4剥离成纳米片分散液,接着通过交替过滤使得Fe_3O_4纳米球与g-C_3N_4纳米片形成球片型的光催化复合材料。利用XRD、BET、SEM及TEM等检测手段对产物的形貌及结构进行表征。通过对比单独的g-C_3N_4与Fe_3O_4/g-C_3N_4复合物,得出Fe_3O_4/g-C_3N_4复合物在还原Cr(Ⅵ)水溶液中显示出高的光催化活性,同时也具有良好的稳定性。  相似文献   

2.
本文通过将Cu~(2+)掺入g-C_3N_4结构中成功制备了Cu/g-C_3N_4光催化剂,并进一步优化其光催化性能。同时,采用多种表征方法对Cu/g-C_3N_4光催化剂的结构、形貌、光学和光电性能进行了分析。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明制备的光催化剂为Cu/g-C_3N_4,且Cu的价态为+2。在可见光照射下,研究了不同铜含量的Cu/g-C_3N_4和gC_3N_4光催化剂的光催化活性。实验结果表明,Cu/g-C_3N_4光催化剂的降解能力显著高于纯相的g-C_3N_4。N_2吸附-解吸等温线表明,Cu~(2+)的引入对g-C_3N_4的微观结构影响不大,说明光催化活性的提高可能与光生载流子的有效分离有关。因此,Cu/g-C_3N_4光催化降解RhB和CIP性能的提升可能是由于Cu~(2+)可以作为电子捕获陷阱从而降低了载流子的复合速率。通过光电测试表明,在g-C_3N_4中掺入Cu~(2+)可以降低g-C_3N_4的电子空穴复合速率,加速电子空穴对的分离,从而提高了其光催化活性。自由基捕获实验和电子自旋共振(ESR)结果表明,超氧自由基(O_2~(·-))、羟基自由基(·OH)和空穴的协同作用提高了Cu/g-C_3N_4光催化剂的光催化活性。  相似文献   

3.
通过水热法合成具有协同机制的三元复合材料Bi_2Fe_4O_9/g-C_3N_4/UiO-66,研究表明三元复合光催化剂的催化活性要高于二元材料和纯材料。这主要是由于Bi_2Fe_4O_9更易于和g-C_3N_4结合形成稳定的Z-scheme异质结结构,使三元复合材料增强了可见光响应能力,提高了电子-空穴分离能力,增强了空穴和电子的氧化还原能力。  相似文献   

4.
采用浸渍法成功地将硅钨酸(SiW_(12))负载到g-C_3N_4表面,制备出一种新型的SiW_(12)/g-C_3N_4复合光催化剂.通过X-射线衍射(XRD)、红外光谱(FT-IR)、扫描电子显微镜(SEM)、荧光光谱(PL)和紫外-可见分光光度计(UV-Vis)等测试手段对其结构和性能进行表征.光催化实验表明,在可见光照射下(λ420nm),SiW_(12)/g-C_3N_4复合材料表现出比纯gC3N4更高的光催化性能.其中,SiW_(12)/g-C_3N_4(质量比为1∶3)复合材料具有最好的光催化活性,在可见光下辐照120 min时,RhB的脱色率达98.0%.若加入H_2O_2(2 mL,质量分数为30%)进行修饰,仅在可见光下辐照24min,RhB的脱色率就达到97.7%.SiW_(12)/g-C_3N_4复合材料光催化活性的提高归因于光生电子-空穴对的有效分离.此外,由H_2O_2分解产生的氢氧自由基(·OH)也起到了至关重要的作用.  相似文献   

5.
采用自组装和化学沉淀法分别制得两种可见光驱动复合材料石墨相氮化碳/碳酸氧铋(g-C_3N_4/Bi_2O_2CO_3).采用X射线衍射光谱(XRD),紫外可见光谱、扫描电镜(SEM)、N_2吸附、电化学阻抗谱(EIS)和X射线光电子能谱(XPS)等分析手段对制备的催化剂进行了表征.结果表明,制备方法对纳米复合材料的晶相、形态及光学性能没有影响,但是影响g-C_3N_4和Bi_2O_2CO_3之间的相互作用力,导致光生电子-空穴对的分离速率存在显著差异.以可见光驱动苯酚和罗丹明B的降解实验为探针反应检测催化剂的光催化性能.实验结果表明自组装法得到的异质结催化剂中相互作用力更强,催化效果最高.O_2-是罗丹明B降解反应的主要活性物种,染料的光敏化、Bi_2O_2CO_3与g-C_3N_4综合效应,导致光生载流子电荷分离效率更高.  相似文献   

6.
以三聚氰胺和六水合氯化钴为原料,一锅法制备Co_3O_4负载的多孔石墨相氮化碳(Co_3O_4/g-C_3N_4)复合光催化材料。采用X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL)等手段对其结构和光学特性进行表征。以盐酸四环素(TC)为目标污染物,评价了不同负载量Co_3O_4/g-C_3N_4复合光催化剂的可见光催化性能。结果表明,所制备的Co_3O_4/g-C_3N_4复合光催化剂为多孔结构,其比表面积较大,并在可见光区域具有显著的吸收。利用原位生成的Co_3O_4纳米粒子在氮化碳表面形成异质结构,可有效转移光生载流子,降低光生电子-空穴的再结合率,从而提高光催化活性。并且存在最佳Co_3O_4复合量,当六水合氯化钴加入量为三聚氰胺的8%(w/w)时,所制备的复合光催化剂CoCN-8具有最佳的光催化性能。在可见光的照射下,60 min内可降解85%的TC,而同样条件下,纯g-C_3N_4仅降解23%的TC。  相似文献   

7.
首先在N-甲基吡咯烷酮溶液中超声剥离得到少层的MoS_2,将其与石墨相氮化碳(g-C_3N_4)复合,制得MoS_2/g-C_3N_4复合材料。采用X射线衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),Raman光谱,紫外-可见漫反射吸收光谱(DRS)和光致荧光(PL)技术对复合材料进行表征。可见光下考察MoS_2/g-C_3N_4复合材料光催化降解罗丹明B(Rh B)的活性,结果表明:将少量MoS_2与g-C_3N_4复合可明显提高光催化活性,且1%(w/w)MoS_2/g-C_3N_4复合物的光催化活性最高,可能的原因是MoS_2和g-C_3N_4匹配的能带结构,增大了界面间电荷的传输,降低了光生电子-空穴的复合,进而提高了光催化活性。  相似文献   

8.
近年发展起来的低能耗、高效率的光催化技术为解决环境污染和能源短缺等问题提供了新途径.在众多光催化材料中,非金属石墨相氮化碳(g-C_3N_4)半导体材料因其化学稳定性和热稳定性优异、能带结构易调控、前驱体价格低廉等特点备受关注.然而,g-C_3N_4的光生电子-空穴对极易复合,比表面积较小,不能充分利用太阳光等,因而其光催化活性较低.目前,为了提高g-C_3N_4光催化性能,多采用金属或非金属元素掺杂、与其他物质形成异质结、与其他半导体材料进行共聚合等方式.其中,共聚合有利于调节g-C_3N_4内部电子结构,促进g-C_3N_4光生载流子的分离与迁移,而且具有高度离域π-π*共轭结构的导电聚合物更适合与g-C_3N_4进行共聚合,从而进一步提高g-C_3N_4的光催化性能.本文采用原位聚合法制备合成了导电聚吡咯(PPy)与g-C_3N_4的复合材料,并以10 mg L.1亚甲基蓝(MB)作为目标污染物评价其可见光催化性能.经X射线衍射、扫描电镜、透射电镜、比表面积、紫外-可见光谱等一系列表征分析可知,PPy/g-C_3N_4复合物(002)晶面衍射峰强度较g-C_3N_4减弱,表明PPy抑制了g-C_3N_4晶型生长,但未影响其晶型结构.不规则薄片状g-C_3N_4表面均匀地负载有非晶态PPy颗粒,复合物微观形貌发生变化.PPy与g-C_3N_4共轭芳香环层间堆积形成的介孔、大孔孔径和孔容积均增加,比表面积增大了7 m2 g.1,使目标污染物能与光催化剂表面活性物质充分接触反应.同时,PPy具有较强吸光系数,对可见光能完全吸收;PPy/g-C_3N_4复合物的可见光吸收边带发生红移,呈现出较g-C_3N_4更强的可见光吸收能力,提高对可见光的利用效率.光催化降解MB实验结果表明,在可见光(12 W LED灯)照射2 h后,含有0.75 wt%PPy的复合样品0.75PPy/g-C_3N_4表现出最佳光催化活性,MB降解效率为99%;且污染物光催化降解过程符合准一级动力学,反应速率常数(0.03773 min~(-1))约为同条件下g-C_3N_4(0.01284 min~(-1))的3倍.自由基捕获测试实验表明,g-C_3N_4和0.75PPy/g-C_3N_4均产生了·O~2~-自由基,但后者的·O2~-信号更强.这是因为PPy也可吸收可见光并激发出电子,该电子转移到g-C_3N_4导带,再与其本身的电子共同与O2反应生成·O_2-.然而只有0.75PPy/g-C_3N_4在光催化过程中产生了·OH自由基,是由于g-C_3N_4的价带(+1.4 eV)较H_2O/·OH(+2.38 eV vs.NHE)和OH~-/·OH(+1.99 eV vs.NHE)小,此价带上的h~+不能与H_2O和OH~-反应生成·OH,而是由生成的·O_2~-再与e~-和H~+反应产生,即·O_2~-+2H+2e~-CB→·OH+OH~-.本文最后分析了以·O_2~-和·OH作为主要活性物质的PPy/g-C_3N_4复合物光催化降解污染物的反应机理,PPy具有强导电性,可作为光生电子和空穴的传输通道,抑制其在g-C_3N_4表面的复合.  相似文献   

9.
环丙沙星(CIP)的过量使用已经对生态环境造成了很大的威胁。本文设计了一种新型无铁的光电类芬顿体系用于降解水中的CIP。采用溶剂热法合成了Ni O/g-C_3N_4复合材料。通过XRD分析,确定了不同催化剂的晶相和化学组成;红外光谱进一步证实了Ni O/g-C_3N_4复合材料的分子结构,结果表明,成功地合成了Ni O/g-C_3N_4复合材料。利用SEM观察了材料的形貌,结果表明性能最佳的Ni O/g-C_3N_4-60%为二维花状结构。TEM进一步证明Ni O/g-C_3N_4-60%具有片层状结构。由于层状结构,Ni O/g-C_3N_4-60%具有较大的比表面积和丰富的活性位点,有利于电子的传输。XPS分析表明Ni~(2+)和Ni~(3+)共存于Ni O/g-C_3N_4-60%复合材料中并且Ni O/g-C_3N_4-60%具有低配位氧缺陷。EPR谱也证实了氧空位的存在,氧空位不仅促进了H_2O_2的活化,而且有利于金属离子形成稳定的混合价态。UV-Vis-DRS、PL和电化学测试表明Ni O/g-C_3N_4-60%具有最强的光吸收能力、最低的电荷转移电阻和最快的电荷分离效率,有利于活性物质的生成和CIP的快速降解。因此,花状Ni O/g-C_3N_4-60%在光电类芬顿体系中表现出光电协同作用,不仅可以通过Ni~(3+)/Ni~(2+)之间的转化将电芬顿过程中产生的H2O2有效分解为·OH,同时也能够产生光生电子和空穴,促进光照下·OH、·O_2~-和h~+的生成,从而提高环丙沙星的降解效率。以催化性能最佳的Ni O/g-C_3N_4-60%为催化剂时,在90 min内CIP的降解率达到将近100%,120 min时矿化效率达到82.0%,与传统芬顿体系(最佳p H值为2.8–3.5)相比,新型光电类芬顿体系具有较宽的p H范围,当p H值为6时,降解率仍可达78.8%。Ni O/g-C_3N_4-60%在光电类芬顿体系中也表现出良好的结构稳定性,连续5次循环后,降解效率仍保持在96.3%。根据HPLC-MS的结果,提出了CIP降解的两种可能途径。本研究为废水中抗生素的快速降解提供了理论依据。  相似文献   

10.
近年来,石墨型氮化碳(g-C_3N_4)作为一种n型半导体光催化剂材料,由于具有较好的热稳定性和化学稳定性,同时具有可调的带隙结构和优异的表面性质而备受人们关注.然而,传统的g-C_3N_4块体材料存在比表面积小、光响应范围窄和光生载流子易复合等缺陷,制约着其光催化活性的进一步提高.因此,人们开发了多种技术对块体状g-C_3N_4材料进行改性,其中构建基于g-C_3N_4纳米薄片的异质结复合光催化材料被认为是强化g-C_3N_4载流子分离效率,进而提高其可见光催化活性的重要手段.BiOI作为一种窄带隙的p型半导体光催化剂,具有强的可见光吸收能力和较高的光催化活性,同时它与g-C_3N_4纳米薄片具有能级匹配的带隙结构.因此,基于以上两种半导体材料的特性,构建新型的BiOI/g-C_3N_4纳米片复合光催化剂材料不仅能够有效提高g-C_3N_4的可见光利用率,而且还可以在n型g-C_3N_4和p型BiOI界面间形成内建电场,极大促进光生电子-空穴对的分离与迁移效率.为此,本文通过简单的一步溶剂热法在g-C_3N_4纳米薄片表面原位生长BiOI纳米片材料,成功制备了新型的BiOI/g-C_3N_4纳米片复合光催化剂.利用X射线衍射仪(XRD),场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱和瞬态光电流响应谱对所合成复合光催化剂的晶体结构、微观形貌、光吸收性能和电荷分离性能进行了表征测试.XRD,SEM和TEM结果显示,结晶完好的BiOI呈小片状均匀分散在g-C_3N_4纳米薄片表面;紫外漫反射光谱表明,纳米片复合材料的吸光性能较g-C_3N_4薄片有显著提升;瞬态光电流测试证明,复合材料较单一材料有更好的电荷分离与迁移性能.在可见光催化降解RhB的测试中,BiOI/g-C_3N_4纳米片复合光催化剂显示出了优异的催化活性和稳定性,其光降解活性分别为纯BiOI和g-C_3N_4的34.89和1.72倍;自由基捕获实验发现,反应过程中的主要活性物种为超氧自由基(·O_2~-),即光生电子主导整个降解反应的发生.由此可见,强的可见光吸收能力和g-C_3N_4与BiOI界面处形成的内建电场协同促进了g-C_3N_4纳米薄片的电荷分离,进而显著提高了该复合材料的可见光催化降解活性.此外,本文初步验证了在BiOI/g-C_3N_4纳米片复合光催化体系内光生电荷是依据"双向转移"机制进行分离和迁移的,而非"Z型转移"机制.  相似文献   

11.
为了进一步提高聚合物半导体类石墨相氮化碳(g-C_3N_4)降解有机物的活性,通过简单的水热法复合得到碳化MoS_2/掺硫g-C_3N_4异质结(MoSC/S-CN),并在可见光下研究其罗丹明B(RhB)的降解性能。结果表明,相较于纯g-C_3N_4,最优化的MoSC/S-CN样品对可见光的吸收范围得到明显拓宽,并且在100 min内对RhB的降解效率为92.5%,比纯g-C_3N_Q性能提高68.83%。一系列的结构和光学性质表明,掺硫后再进一步与碳化MoS_2耦合可以协同作用于g-C_3N_4,改善g-C_3N_4的能带结构,加速光生电子空穴对的分离,有效提高光催化活性。  相似文献   

12.
g-C_3N_4作为一种新型有机半导体材料,由于其良好的化学稳定性和可直接利用可见光等优点已经引起了人们的广泛关注,近年来已逐渐将其应用于光催化氧化环境污染物等方面.同时在实际应用中因其光能利用率低、难回收、电子-空穴易复合等缺点也受到了限制.研究发现将四氧化三铁与氮化碳相结合,可以有效提高复合催化剂的光催化活性,而且可回收再利用很大程度上降低成本.采用光催化氧化技术处理实际环境污染物废水时,将光催化剂投入到废水中后,环境及水体的温度往往会对催化剂的催化活性产生一定的影响,导致无法实现最佳的光催化处理效果.制备一种催化活性不受外界温度影响的智能光催化材料是当今面临的一项挑战.我们研究制备了一种具有温度响应的磁性复合光催化剂PNIPAM/Fe_3O_4/g-C_3N_4,其可根据外界温度的不同而表现出不同的光催化活性.温敏型聚合物PNIPAM是一类结构、性能和形态随温度变化而做出响应的功能材料,将光催化材料与温敏型PNIPAM智能高分子材料相结合,实现了智能催化的效果.PNIPAM温敏聚合物在水溶液中存在一个低临界溶解温度,其可以作为开关,通过改变温度实现对光催化过程的控制,达到过程智能化的效果.随着温度的改变,温敏聚合物的溶解状态在临界点附近会发生变化.不同温度对催化速率影响很大,当温度升高到临界值以上,催化反应速率降低很多;当温度降低到临界值以下,催化活性随之升高.这样不仅随时控制反应的进行,还可以通过改变温度控制反应速率.同时,温敏聚合层又相当于一个保护层,可以增强其抗腐蚀能力,提高对内部光催化材料的保护,进而提高其稳定性.众所周知四环素等抗生素类药物生产废水,属于高浓度有机废水,具有一定的毒性,一般较难处理.我们将制备的PNIPAM/Fe_3O_4/g-C_3N_4复合光催化材料用于四环素废水的处理取得了很好的效果.XRD,FT-IR、Raman等表征手段充分证明了我们所制备的三元复合材料PNIPAM/Fe_3O_4/g-C_3N_4的组成及各个组分的存在.并对PNIPAM/Fe_3O_4/g-C_3N_4复合光催化剂在不同温度(20和45°C)条件下处理四环素废水进行了系统的研究,从20和45℃的吸附曲线结果可以看出,低温时PNIPAM/Fe_3O_4/g-C_3N_4的吸附性较强,高温时吸附较差.同时PNIPAM/Fe_3O_4/g-C_3N_4低温时具有较高的催化活性,高温时催化活性较低.经过分析可知这种对温度响应的特殊性能与PNIPAM的亲水及疏水性密切相关.另外,通过对PNIPAM/Fe_3O_4/g-C_3N_4复合材料的VSM测试及5次循环实验测试可以看出,PNIPAM/Fe_3O_4/g-C_3N_4复合材料由于Fe_3O_4的引入而表现出较好的磁性,且在外加磁铁的作用下很容易实现分离回收.另外,PNIPAM/Fe_3O_4/g-C_3N_4在经过5次重复利用后其催化活性几乎没有减退,说明催化剂具有很好的稳定性.另一方面,说明我们的复合光催化剂在工业废水等污染治理方面有一定的潜在应用价值.  相似文献   

13.
采用研磨-煅烧技术制备不同g-C_3N_4含量的g-C_3N_4/TiO_2复合粉末催化剂,以模拟太阳光光催化降解气相间二甲苯实验评价催化剂活性.结果表明:当g-C_3N_4含量为60%时,g-C_3N_4/TiO_2-60的降解效果最佳.以此为代表,采用溶胶-凝胶-浸渍-提拉方法 ,制备光纤负载g-C_3N_4/TiO_2薄膜光催化材料,应用于气相间二甲苯的降解.通过X射线粉末衍射(XRD)、紫外可见漫反射(UV-Vis/DRS)及高分辨透射电镜(TEM)对催化剂进行表征.采用光电化学实验、自由基捕获实验探究其光催化机理.结果表明:模拟太阳光光照120min后,光纤负载g-C_3N_4/TiO_2-60薄膜光催化材料对气相间二甲苯的降解率为94%,经过3次循环使用后降解活性无明显变化.光在光纤中的有效传播、光生电子和空穴的快速产生、迁移以及反应体系中形成的·O2-,·OH和hVB+3种活性物种是光纤负载薄膜催化剂实现高效降解气相间二甲苯的原因.  相似文献   

14.
利用类石墨氮化碳(g-C_3N_4)和亚稳相钙钛氧化物(CaTi_2O_5)固相法制备C_3N_4/CaTi_2O_5复合材料。利用X射线衍射(XRD)、金相显微镜、扫描电子显微镜(SEM)及附带能谱分析仪(EDS)和N2吸附-脱附对样品的显微结构和比表面积进行检测分析,并用紫外-可见吸收光度计(UV-Vis)测试了样品的光吸收性能,研究C_3N_4与CaTi_2O_5物质的量之比(nC_3N_4/nCaTi_2O_5)对C_3N_4/CaTi_2O_5复合样品的物相结构和微观形貌的影响,同时考察C_3N_4/CaTi_2O_5复合样品在可见光照射下光催化降解罗丹明染料效果。实验结果表明:相比纯C_3N_4和CaTi_2O_5样品,C_3N_4/CaTi_2O_5复合样品在可见光下具有较高的光催化性能,随着nC_3N_4/nCaTi_2O_5增加,样品的光催化降解率随之增加而后降低,当nC_3N_4/nCaTi_2O_5=1∶1时,样品的光催化降解率达到最大值99.5%,并且循环重复利用5次后,样品的光催化剂降解率仍几乎保持不变。复合样品光催化性能提高主要归因于复合能级结构有效地抑制了电子和空穴复合所致。  相似文献   

15.
刘优昌  王亮 《燃料化学学报》2018,46(9):1146-1152
以三聚氰胺作为合成g-C_3N_4纳米片的前躯体,以Bi(NO3)3·5H2O和KBr作为合成BiOBr的原料,采用水热法构建g-C_3N_4/Bi OBr二维异质结可见光催化剂,有效的晶面复合和合适的能带组合有助于增强g-C_3N_4和BiOBr的可见光催化活性。利用X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、光致发光光谱(PL)和紫外-可见漫反射光谱(UVvis DRS)等方法表征其结构、光学性质以及组成结构。在可见光(λ420 nm)下以光催化降解RhB来评价合成催化剂的光催化活性,结果表明,g-C_3N_4/BiOBr光催化降解罗丹明B(Rh B)的效率高于单体g-C_3N_4和BiOBr,并对g-C_3N_4/BiOBr增强可见光催化RhB机理进行解释。  相似文献   

16.
通过热解-水热两步法制备了石墨烯/石墨相氮化碳/二硫化钼(RGO/g-C_3N_4/MoS_2)复合材料并使用多种分析表征手段对RGO/g-C_3N_4/MoS_2的结构、形貌及光催化性能进行分析。结果表明,具有异质结构的g-C_3N_4/MoS_2与RGO复合后,通过良好的界面接触和电荷的快速转移,增强了其光生电子-空穴的分离。经可见光照射120 min后,RGO/g-C_3N_4/MoS_2复合材料可降解97%亚甲基蓝。此外,循环实验表明RGO/g-C_3N_4/MoS_2复合材料具有良好的稳定性,经5次循环仍能保持93.2%的光催化活性。  相似文献   

17.
利用原位沉积法将Bi OBr纳米片生长到g-C_3N_4表面,制得g-C_3N_4-Bi OBr p-n型异质结复合光催化剂。采用X射线衍射(XRD)、红外光谱(FTIR)、场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、紫外可见漫反射(UV-Vis-DRS)和荧光光谱(PL)等测试对光催化剂结构和性能进行表征。通过可见光辐照降解甲基橙水溶液检测评估复合光催化剂光催化活性。研究结果表明:复合光催化剂由Bi OBr和g-C_3N_4两相组成,Bi OBr纳米片在片状g-C_3N_4表面快速形核生长形成面-面复合结构。相比于纯相g-C_3N_4和Bi OBr,g-C_3N_4-Bi OBr复合材料具有更强可见光吸收能力,吸收带边红移。在可见光辐照100 min后,性能最佳的2:8 gC_3N_4-Bi OBr复合光催化剂光催化活性分别是纯相g-C_3N_4和Bi OBr的1.8和1.2倍,经过4次循环实验后,其降解率仍达84%,说明复合结构光催化剂催化性能和稳定性增强。复合光催化剂的荧光强度显著降低,说明光生载流子复合得到了有效抑制。复合光催化剂催化性能的提高归因于p-n型异质结促进电荷有效分离、抑制电子-空穴复合和吸收光波长范围的扩展,相比单一成分材料具有更好的催化活性和稳定性。自由基捕获实验证明,可见光降解甲基橙光催化过程中的主要活性成分为空穴,并据此提出了可能的光催化机理。  相似文献   

18.
太阳能光催化技术广泛应用于处理环境污水中.Z型光催化剂体系具有较强的氧化还原能力,降低半导体的带隙,且使导带更负,价带更正,有效拓宽光生电子-空穴空间距离,抑制其复合,大大提高了光催化剂的催化性能,因此,构筑直接的Z型光催化体系已成为光催化领域的研究热点之一.TiO_2具有较好的光催化性能和良好的化学稳定性,但其禁带较宽,只能被太阳光中约占4%的紫外光激发,对太阳光中约占50%的可见光不响应,且光生电子-空穴易复合.g-C_3N_4是非金属光催化剂,具有较好的光催化活性,可见光吸收非常强,但比表面积较小,光生电子-空穴易复合.还原氧化石墨烯(RGO)具有大的比表面积和优异的传输载流子能力,可显著提高光催化剂的比表面积,同时降低电子空穴复合效率,从而在一定程度上改善光催化剂性能.大量研究证实, TiO_2/g-C_3N_4/RGO三元异质结的光催化性能明显优于单组份TiO_2, g-C_3N_4和二元TiO_2/g-C_3N_4光催化剂,但现有制备工艺复杂且耗时,因此,简易地构筑具有高光催化性能的Z型TiO_2/g-C_3N_4/RGO三元异质结仍具有挑战性.本文采用简易的直接电纺法构筑了高光催化活性的Z型TiO_2/g-C_3N_4/RGO三元异质结光催化剂,通过调节尿素的用量成功制备了一系列不同形貌的TiO_2/g-C_3N_4/RGO三元异质结.并采用X-射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、扫描电子显微镜、透射电子显微镜、紫外-可见漫反射吸收光谱、氮气吸附-脱附测试、光电化学测试和荧光光谱等技术对所制备样品的晶型、组成、形貌、光捕获能力、载流子分离能力、比表面积、光电流、阻抗、光降解性能以及羟基自由基的生成进行系统性测试.以罗丹明B为目标探针分子,考察了模拟太阳光下所制备的光催化剂的光催化活性,结果表明,尿素添加量为0.6g时,电纺构筑的TiO_2/g-C_3N_4/RGO三元异质结在60min具有99.1%的光催化降解效率,显著优于纯TiO_2, g-C_3N_4,二元TiO_2/g-C_3N_4以及制备的其它TiO_2/g-C_3N_4/RGO三元异质结光催化剂.基于光电化学测试、活性物种淬灭实验和荧光光谱分析测试羟基自由基等分析结果,提出了一个合理的Z型增强光催化活性机理.  相似文献   

19.
光催化产氢可以直接将太阳能转化为化学能,是非常有前景的产氢技术之一.然而,光催化产氢的瓶颈在于如何提高光催化产氢效率和光催化剂的稳定性,以及降低产氢成本.因此,开发廉价、易于制备的产氢光催化剂引起人们广泛关注.作为一种非金属半导体光催化剂,石墨相氮化碳(g-C_3N_4)具有良好的物理化学性质,如良好的化学和热稳定性、极佳的光电性能、强的抗氧化能力等.更为重要的是,g-C_3N_4具有合适的能带结构,能够利用可见光.因此,g-C_3N_4已广泛应用于光催化降解、空气净化、光解水和光催化CO2还原等领域.然而,体相g-C_3N_4仍然暴露出一些缺点,例如比表面积小、光生电子-空穴对的复合率高和反应动力学差等.将体相g-C_3N_4剥离成g-C_3N_4纳米薄片是提高光催化效率的有效方法.薄层g-C_3N_4纳米片具有较高的比表面积,比体相的g-C_3N_4有更好的光生电子-空穴对分离效率.为了进一步提高g-C_3N_4的光催化性能,本文通过在薄层g-C_3N_4表面均匀分散Au纳米颗粒来控制电荷载流子的流动.并通过光催化产氢和污染物降解来评估金/薄层氮化碳(Au/monolayer g-C_3N_4)复合材料的光催化性能.所有的Au/薄层g-C_3N_4复合材料均显示出优于体相g-C_3N_4的光催化性能,其中1%Au/薄层g-C_3N_4复合光催化剂具有最高的产氢速率(565μmol g.1h.1),且具有最佳的污染物降解能力.这主要归结于热电子的注入,而不是肖特基结.Au纳米颗粒的成功引入带来了表面等离子共振(SPR)效应,SPR效应不仅能够提高光吸收效率,而且能够带来高效的热电子转移途径.热电子是从Au纳米颗粒表面注入到薄层g-C_3N_4纳米片的导带上.因此,Au/薄层g-C_3N_4复合光催化剂具有更高的光生电子-空穴对迁移和分离效率,以及更低的光生电子-空穴对复合几率.采用紫外可见光谱(UV-Vis)、光致发光光谱(PL)、光电流和阻抗等表征手段研究了Au/薄层g-C_3N_4复合光催化剂性能提升的原因.结果表明,相比于薄层g-C_3N_4纳米片,Au/薄层g-C_3N_4复合光催化剂具有更好的光电性能,因而光催化活性更高.此外,与薄层g-C_3N_4纳米片的光电流强度相比,Au/薄层g-C_3N_4复合光催化剂的光电流强度没有发生改变,这表明薄层g-C_3N_4纳米片导带上的光生电子不可能转移到Au纳米颗粒的表面.也就是说,肖特基结并没有参与到电子转移过程中,因此推测出整个光催化反应是热电子注入在起作用  相似文献   

20.
采用简便的化学浸渍法制备了新型磁性可分离的纳米复合物H_5PMo_(10)V_2O_(40)/Fe_3O_4/g-C_3N_4(PMoV/Fe_3O_4/g-C_3N_4),并进行了详细的表征,采用电位滴定法测定了催化剂酸性.该PMoV/Fe_3O_4/g-C_3N_4纳米复合物在硫化物选择氧化为砜或亚砜的反应中表现出较高的催化活性;考察了在优化反应条件下,它在含硫(包括二苯并噻吩DBT)模拟油或真实石油的催化氧化反应中的催化性能;特别考察了各种含氮化合物,以及1-环和2-环芳香烃作为共溶剂对DBT脱硫效果的影响.采用外加磁场即可方便地将该催化剂从反应混合物中分离和回收.选取最好的萃取剂,通过简单的倾滤就可很容易地将剩余反应物从产物中分离出来.该纳米催化剂具有高催化活性,且容易重复使用,至少可以重复使用4次而未见催化活性明显下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号