首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
魏争  王琴琴  郭玉拓  李佳蔚  时东霞  张广宇 《物理学报》2018,67(12):128103-128103
作为一种新型的二维半导体材料,单层二硫化钼薄膜由于其优异的特性,在电子学与光电子学等众多领域具有潜在的应用价值.本文综述了我们课题组在过去几年中针对单层二硫化钼薄膜的研究所取得的进展,具体包括:在二硫化钼薄膜的制备方面,通过氧辅助化学气相沉积方法,实现了大尺寸单层二硫化钼单晶的可控生长和晶圆级单层二硫化钼薄膜的高定向外延生长;在二硫化钼薄膜的加工方面,发展了单层二硫化钼薄膜的无损转移、洁净图案化加工、可控结构相变与局域相调控的方法,为场效应晶体管等电子学器件的制备与性能优化提供了基础;在二硫化钼异质结方面,研究了二硫化钼薄膜与其他二维材料形成的异质结的电学以及光电性质,为二维材料异质结的构筑和器件特性研究提供了实验参考;在二硫化钼薄膜功能化器件与应用方面,构筑了全二维材料、亚5 nm超短沟道场效应晶体管器件,验证了单层二硫化钼对短沟道效应的有效抑制及其在5 nm工艺节点器件中的应用优势;此外,利用制备的高质量单层二硫化钼和发展的器件洁净加工技术,实现了高性能柔性薄膜晶体管的集成,获得了超高灵敏度与稳定性的非接触型湿度传感器.我们在二硫化钼薄膜的制备、加工以及器件特性研究方面所取得的进展对于二硫化钼及其他二维过渡金属硫属化合物的基础和应用研究均具有指导意义.  相似文献   

2.
随着信息技术的不断进步,核心元器件朝着运行速度更快、能耗更低、尺寸更小的方向快速发展.尺寸不断减小导致的量子尺寸效应使得材料和器件呈现出许多与传统三维体系不同的新奇物性.从原子结构出发,预测低维材料物性、精准合成、表征、调控并制造性能良好的电子器件,对未来电子器件的发展及相关应用具有至关重要的意义.理论计算能在保持原子级准确度的情况下高效、低耗地预测材料结构、物性、界面效应等,是原子制造技术中不可或缺的重要研究手段.本综述从第一性原理计算角度出发,回顾了近年来其在二维材料结构探索、物性研究和异质结构造等方面的应用及取得的重要进展,并展望了在原子尺度制造背景下二维材料的发展前景.  相似文献   

3.
本文介绍了高鸿钧课题组在物理所20年来的部分代表性工作.研究的主要方向为低维纳米功能材料的分子束外延可控制备、生长机制、物性调控及其在未来信息技术中的原理性应用.从材料的可控制备入手,结合第一性原理的理论计算,阐明材料生长机制和结构与物性的关系,进而实现物性调控和原理性应用.主要内容有:1)纳米尺度"海马"分形结构的形成及其生长机制;2)STM分辨率的提高及最高分辨Si(111)-7×7原子图像的获得;3)固体表面上功能分子的吸附、组装及其机制;4)稳定、重复、可逆的纳米尺度电导转变与超高密度信息存储;5)固体表面上单分子自旋态的量子调控及其原理性应用;6)原子尺度上朗德g因子的空间分辨及其空间分布不均匀性的发现;7)晶圆尺寸、高质量、单晶石墨烯的制备及原位硅插层绝缘化;8)几种新型二维原子晶体材料的可控构筑及其物性调控;9)"自然图案化"的新型二维原子晶体材料及其功能化.这些工作为低维量子结构的构造、物性调控及其原理性应用奠定了基础.  相似文献   

4.
随着未来信息器件朝着更小尺寸、更低功耗和更高性能方向的发展,构建器件的材料尺寸将进一步缩小.传统的"自上而下"技术在信息器件发展到纳米量级时遇到瓶颈,而气相沉积技术由于其能在原子尺度构筑纳米结构引起极大关注,被认为是最有潜力突破现有制造极限进而在原子尺度构造、搭建物质形态的"自下而上"方法.本文重点讨论适用于低维材料的原子尺度制造的分子束外延技术和原子层沉积/刻蚀技术.简要介绍相关技术中蕴含的科学原理及其在纳米信息器件加工和制造领域的应用,并探讨如何在原子尺度实现对低维功能材料厚度和微观形貌的精密控制.  相似文献   

5.
近年来,二维层状材料由于其丰富的材料体系和独特的物理化学性质而受到人们的广泛关注.后摩尔时代要求器件高度集成化,大面积、高质量的二维材料可以保证器件中结构和电子性能的连续性.要实现二维材料工业级别的规模化生产,样品的可控制备是其前提.化学气相沉积是满足上述要求的一种强有力的方法,已广泛应用于二维材料及其复合结构的生长制备.但是要实现多种二维材料大尺寸以至晶圆级的批量制备仍然是很困难的,因此,需要进一步建立对各种二维材料生长控制的系统认识.本文基于材料生长机理分析了化学气相沉积反应中的物质运输、成核、产物生长过程对二维材料尺寸的影响,以及如何通过调控这些过程实现二维材料大面积薄膜的可控制备.通过对目前研究成果的总结分析,讨论了如何进一步实现二维材料的高质量大面积制备.  相似文献   

6.
石墨烯射频器件研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
卢琪  吕宏鸣  伍晓明  吴华强  钱鹤 《物理学报》2017,66(21):218502-218502
石墨烯因具有优良的电学特性,在半导体行业中受到广泛关注,特别因其具有超薄的结构和极高的载流子迁移率,为解决短沟道效应提供了可能,并且在高速电子领域具有应用前景.近年来,使用石墨烯作为沟道材料制备射频晶体管及射频电路是发挥石墨烯材料优势的一个重要研究方向.制造高性能的射频器件,首先要制备出高性能的石墨烯材料.在金属衬底上沉积均匀的单层石墨烯材料或者在绝缘衬底上外延生长单层、双层石墨烯材料都是获得高质量石墨烯材料的常用方法.器件结构及工艺流程的设计也是提升晶体管射频性能的重要因素,多指栅结构、T型栅结构、埋栅结构以及自对准工艺的发展能够有效改善石墨烯射频晶体管的截止频率及最大振荡频率.石墨烯晶体管独特的电学特性使得其除了可以构造与其他半导体材料电路相似的射频电路结构,还可以构造出功能完整并且结构更加简单的新型射频电路结构.  相似文献   

7.
韩林芷  赵占霞  马忠权 《物理学报》2014,63(24):248103-248103
石墨烯作为一种二维sp2杂化碳的同素异形体,具有优良的电学、光学、热学及力学等性质.产业化应用石墨烯要求其具有大的尺寸且性质均一.化学气相沉积法(CVD)的出现为制备大尺寸、高质量的石墨烯提供了可能.本文结合近几年CVD法制备石墨烯的研究进展,综述了影响大尺寸、单晶石墨烯制备的工艺参数,包括衬底选择与预处理、碳源与辅助气体流量调控、腔体温度和压力控制、沉积时间以及降温速率设定等.最后展望了制备大尺寸单晶石墨烯的研究方向.  相似文献   

8.
超表面由亚波长尺度二维人工微结构构成,可以实现对光场振幅、相位、偏振等多参量进行调控,为光场调控提供了优良平台。二维材料作为一种新型层状结构材料,相对于三维体材料有着十分独特的光学和电学特性,其与超表面结合为纳米尺度平面光学器件的发展提供了新的可能。本文综述了基于原子层厚度的二维材料超表面发展,介绍了多种二维材料超表面光场调控机制、制备以及应用,最后对原子层厚度超表面发展面临的挑战和潜在应用进行展望。  相似文献   

9.
当前,尽管集成电路制造工艺水平不断提高,但受到量子效应的限制,器件尺寸的缩小使业界遇到了可靠性低、功耗大等瓶颈,微电子行业延续了近50年的"摩尔定律"将难以持续. 2004年二维材料—石墨烯的问世,为突破集成电路的功耗瓶颈带来了新的机遇.由于低维特性,二维材料在一层或者几层原子厚度中表现出丰富多样的电学、磁学、力学和光学等物理特性.其中,铁磁性在信息处理、存储等技术上有着广泛的应用价值.然而,目前在实验上合成的具有铁磁性的二维材料屈指可数.同时,在二维系统中长程有序磁态会因为热涨落的因素在有限温度内受到强烈的抑制,无法在室温下保持铁磁性,这为后续工作带来了不可忽视的限制与挑战.因此实现二维磁性材料室温下的铁磁有序及其调控是现阶段需要解决的重大问题.本综述详细地介绍了二维磁性材料的发展过程、制备方法及其优越性能,并着重阐述了调控二维磁性材料居里温度的方法.最后,扼要地分析并展望了二维磁性材料在未来的应用前景.  相似文献   

10.
二维材料具有原子级光滑表面、纳米级厚度和超高的比表面积,是研究金属纳米颗粒与二维材料的界面相互作用,实时、原位观察金属纳米颗粒的表面原子迁移、结构演化和聚合等热力学行为的重要载体.设计和构筑金属纳米颗粒与二维材料异质结构界面,在原子尺度分析和表征界面结构,揭示材料结构和性能之间的相互关系,对于理解其相互作用和优化器件性能具有重要价值.本文总结了近年来金属纳米颗粒在二维材料表面成核、生长、结构演化及其表征的最新进展,分析了金属纳米颗粒对二维材料晶体结构、电子态、能带结构的影响,探讨了可能的界面应变、界面反应,及其对电学和光学等性质的调控,讨论了金属纳米颗粒对基于二维材料的场效应管器件和光电器件的性能提升策略.为从原子、电子层次揭示微结构、界面原子构型等影响金属纳米颗粒-二维材料异质结性能的物理机制,为金属-二维材料异质结构的研制及其在电子器件、光电器件、能源器件等领域的应用奠定了基础.  相似文献   

11.
原子级厚度的单层或者少层二维过渡金属硫族化合物因其独特的物理特性而被寄希望成为下一代光电子器件的重要组成部分。然而,二维材料的缺陷在很大程度上影响着材料的性质。一方面,缺陷的存在降低了材料的荧光量子效率、载流子迁移率等重要参数,影响了器件的性能。另一方面,合理地调控和利用缺陷催生了单光子源等新的应用,因此,表征、理解、处理和调控二维材料中的缺陷至关重要。本文综述了二维过渡金属硫族化合物中的缺陷以及缺陷相关的载流子动力学研究进展,旨在梳理二维材料中的缺陷及其超快动力学与材料性能之间的关系,为二维过渡金属硫族化合物材料特性和高性能光电子器件的相关研究提供支持。  相似文献   

12.
喷墨打印镉基量子点发光二极管(QLEDs)有望应用于大尺寸全彩显示面板且具有材料利用率高的特点而广受关注。但目前喷墨打印器件效率远低于旋涂制备的同结构器件,针对这一问题,本文研究了在PVK空穴传输层上喷墨打印绿光量子点器件及量子点墨水溶剂对传输层界面的影响。研究发现,喷墨打印过程中的层间互溶是影响器件效率的关键,在采用正交溶剂结合喷墨工艺优化实现了高质量的膜层与界面后,获得了6.3%的喷墨印刷绿光QLEDs外量子效率。  相似文献   

13.
稀土离子掺杂晶体具有稳定的固态物性和出色的能级跃迁相干特性,在量子信息应用研究,尤其是发展量子存储设备方面独具潜力.除了宏观的块状稀土离子单晶,微纳尺度稀土离子晶体在高度集成的杂化量子系统和微型化量子设备方面也具有广泛的应用前景,且其制备难度较低,在体积、形状和组分调控上更具灵活性.因此,开发高性能的微纳尺度稀土离子晶体系统,并对其量子态进行精密探测与操控,已成为量子信息领域的重要研究方向之一.本文结合稀土离子晶体的高分辨和相干光谱学表征技术,综述了近年来微纳尺度稀土离子晶体在材料制备加工、量子相干性能测量、物理机理探索以及量子器件开发等方面的研究进展,对其在量子存储、量子频率转换、量子单光子源以及量子逻辑门等方面取得的最新研究进展进行了总结.最后,对微纳尺度稀土晶体材料及其信息器件研究过程中可能的改进方向和策略进行了讨论.  相似文献   

14.
李更  郭辉  高鸿钧 《物理学报》2022,(10):32-50
由于量子受限效应,二维材料表现出很多三维材料所不具备的优异电学、光学、热学以及力学性能,为研究人员所关注.材料的优异物性离不开高质量材料的制备,超高真空环境可以减少杂质分子的污染与影响,提高二维材料的质量与性能.本文介绍基于超高真空环境的新型二维原子晶体材料的原位制备方法,包括利用分子束外延构筑新型二维材料、利用石墨烯插层构筑新型二维原子晶体材料异质结构以及利用扫描探针原位操纵构筑二维材料异质结构三大类.文章回顾利用这三类方法构筑的二维材料及其物理化学性质,比较三种方法各自的优势与局限性,对未来二维材料制备提供一定的指引.  相似文献   

15.
二硫化钼(MoS2)作为一种新兴的二维半导体材料,它具有天然原子级的厚度以及优异的光电特性和机械性能,在未来超大规模集成电路中具有巨大的应用潜力.本文综述了我们课题组在过去几年中在单层MoS2薄膜研究方面所取得的进展,具体包括:在MoS2薄膜制备方面,通过氧辅助气相沉积方法,实现了大尺寸MoS2单晶的可控生长;通过独特的多源立式生长方法,实现了4 in晶圆级大晶粒高定向的单层MoS2薄膜的外延生长,样品显示出极高的光学和电学质量,是目前国际上报道的质量最好的晶圆级MoS2样品;通过调节MoS2薄膜的氧掺杂浓度,可以实现对其电学和光学特性的有效调控.在MoS2薄膜器件与应用方面,利用制备的高质量单层MoS2薄膜,实现了高性能柔性晶体管的集成,这种大面积柔性逻辑和存储器件显示出优异的电学性能;在集成多层场效应晶体管的基础上,设计,加工了垂直集成的多层全二维材料的多功能器件,充分发挥器件的组合性能...  相似文献   

16.
以石墨烯为代表的二维材料因其独特的结构和优异性能而受到广泛关注。随着二维材料在无限小的方向不断发展,二维(材料)量子片逐渐引起人们极大的兴趣。二维量子片不仅保留了二维材料的本征特性,而且表现出量子限域和突出的边缘效应,为二维材料的潜在应用带来全新机遇。本文详细介绍了二维量子片的基本概念,制备现状与光学性能的研究进展,特别强调了二维量子片本征、普适和规模制备的实现及其重大意义。此外,重点关注了二维量子片的光致发光特性以及在非线性光学、固态发光器件等领域的应用。最后,分析了二维量子片的发展趋势以及面临的主要挑战。  相似文献   

17.
二维原子晶体材料具有与石墨烯相似的晶格结构和物理性质,为纳米尺度器件的科学研究提供了广阔的平台.研究这些二维原子晶体材料,一方面有望弥补石墨烯零能隙的不足;另一方面继续发掘它们的特殊性质,有望拓宽二维原子晶体材料的应用领域.本文综述了近几年在超高真空条件下利用分子束外延生长技术制备的各种类石墨烯单层二维原子晶体材料,其中包括单元素二维原子晶体材料(硅烯、锗烯、锡烯、硼烯、铪烯、磷烯、锑烯、铋烯)和双元素二维原子晶体材料(六方氮化硼、过渡金属二硫化物、硒化铜、碲化银等).通过扫描隧道显微镜、低能电子衍射等实验手段并结合第一性原理计算,对二维原子晶体材料的原子结构、能带结构、电学特性等方面进行了介绍.这些二维原子晶体材料所展现出的优异的物理特性,使其在未来电学器件方面具有广阔的应用前景.最后总结了单层二维原子晶体材料领域可能面临的问题,同时对二维原子晶体材料的研究方向进行了展望.  相似文献   

18.
可剥离至原子层厚度的层状材料被称为二维原子晶体,是凝聚态物理研究的前沿材料体系之一.与体材料相比,二维原子晶体的原子完全暴露,对外界环境极为敏感,因此剥离、转移、旋转、堆叠、封装和器件加工技术对于其电子器件质量和电学输运性质研究尤为关键.本文介绍了二维原子晶体转移工艺的重要发展,尤其是对其二维电子气的输运性质有突破性提升的进展.针对基于二维原子晶体的电子器件,从二维电子气的无序、接触电阻、载流子迁移率、可观测的量子霍尔态等角度衡量器件质量,并详细介绍了与之相对应的转移技术、器件结构与加工工艺.  相似文献   

19.
MoS2是一种具有优异光电性能和奇特物理性质的二维材料,在电子器件领域具有巨大的应用潜力.高效可控生长出大尺寸单晶MoS2是该材料进入产业应用所必须克服的重大难关,而化学气相沉积技术被认为是工业化生产二维材料的最有效手段.本文介绍了一种利用磁控溅射预沉积钼源至熔融玻璃上,通过快速升温的化学气相沉积技术生长出尺寸达1 mm的单晶MoS2的方法,并通过引入WO3粉末生长出了二硫化钼与二硫化钨的横向异质结(WS2-MoS2).拉曼和荧光光谱仪测试表明所生长的样品具有较好的晶体质量.利用转移电极技术制备出了背栅器件样品并对其进行了电学测试,在室温常压下开关比可达10~5,迁移率可达4.53 cm~2/(V·s).这种低成本高质量的大尺寸材料生长方法为二维材料电子器件的大规模应用找到了出路.  相似文献   

20.
GaN基发光二极管衬底材料的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
GaN基发光二极管(LED)作为第三代照明器件在近年来发展迅猛.衬底材料作为LED制造的基础,对器件制备与应用具有极其重要的影响.本文分析综述了衬底材料影响LED器件设计与制造的关键特性(晶格结构、热胀系数、热导率、光学透过率、导电性),对比了几种常见衬底材料(蓝宝石、碳化硅、单晶硅、氮化镓、氧化镓)在高质量外延层生长、高性能器件设计和衬底材料制备方面的研究进展,并对几种材料的发展前景做出了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号