首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
探索低维材料的新奇物性是当前凝聚态物理和材料科学基础研究的一个重要前沿.应变是调控低维材料物性的一个重要手段.相比于块体材料,低维材料通常具有良好的力学柔韧性,并表现出敏锐的结构-电子响应关系,因此可以通过结构变形对材料电子性质进行有效调控.本文主要目的是介绍二维材料中通过非均匀应变获得新奇物性的研究进展.主要讨论两个效应,即赝磁场效应和挠曲电效应.具体来说,通过解析理论、实验进展、计算模拟以及围绕这些效应的应用等方面介绍相关研究进展.从计算模拟的角度看,由于非均匀应变破坏了晶体的平移对称性,基于周期性边界条件的量子力学计算方法如第一性原理不再适用.本文将介绍一个专门用来模拟非均匀应变的原子级计算方法,即广义布洛赫方法,并简要介绍该方法的一些具体应用.  相似文献   

2.
随着芯片尺寸不断缩小,短沟道效应、热效应日趋显著.开发全新的量子材料体系以实现高性能芯片器件应用已成为当前科技发展的迫切需求.二维材料作为一类重要的量子材料,其天然具备原子层厚度和平面结构,能够有效克服短沟道效应并兼容当代微纳加工工艺,非常有望应用于新一代高性能器件方向.与硅基芯片发展类似,二维材料芯片级器件应用必须基于高质量、大尺寸的二维单晶材料制造.然而,由于二维材料的表界面特性,现有体单晶制备技术不能完全适用于单原子层结构的二维单晶制造.因此,亟需发展新的制备策略以实现大尺寸、高质量的二维单晶原子制造.有鉴于此,本文重点综述表界面调控二维单晶大尺寸制备技术发展现状,总结梳理了米级二维单晶原子制造过程中的3个关键调控方向,即单畴生长调控、单晶衬底制备和多畴取向控制.最后,系统展望了大尺寸二维单晶在未来规模化芯片器件方向的潜在应用前景.  相似文献   

3.
可剥离至原子层厚度的层状材料被称为二维原子晶体,是凝聚态物理研究的前沿材料体系之一.与体材料相比,二维原子晶体的原子完全暴露,对外界环境极为敏感,因此剥离、转移、旋转、堆叠、封装和器件加工技术对于其电子器件质量和电学输运性质研究尤为关键.本文介绍了二维原子晶体转移工艺的重要发展,尤其是对其二维电子气的输运性质有突破性提升的进展.针对基于二维原子晶体的电子器件,从二维电子气的无序、接触电阻、载流子迁移率、可观测的量子霍尔态等角度衡量器件质量,并详细介绍了与之相对应的转移技术、器件结构与加工工艺.  相似文献   

4.
随着未来信息器件朝着更小尺寸、更低功耗和更高性能方向的发展,构建器件的材料尺寸将进一步缩小.传统的"自上而下"技术在信息器件发展到纳米量级时遇到瓶颈,而气相沉积技术由于其能在原子尺度构筑纳米结构引起极大关注,被认为是最有潜力突破现有制造极限进而在原子尺度构造、搭建物质形态的"自下而上"方法.本文重点讨论适用于低维材料的原子尺度制造的分子束外延技术和原子层沉积/刻蚀技术.简要介绍相关技术中蕴含的科学原理及其在纳米信息器件加工和制造领域的应用,并探讨如何在原子尺度实现对低维功能材料厚度和微观形貌的精密控制.  相似文献   

5.
本文介绍了高鸿钧课题组在物理所20年来的部分代表性工作.研究的主要方向为低维纳米功能材料的分子束外延可控制备、生长机制、物性调控及其在未来信息技术中的原理性应用.从材料的可控制备入手,结合第一性原理的理论计算,阐明材料生长机制和结构与物性的关系,进而实现物性调控和原理性应用.主要内容有:1)纳米尺度"海马"分形结构的形成及其生长机制;2)STM分辨率的提高及最高分辨Si(111)-7×7原子图像的获得;3)固体表面上功能分子的吸附、组装及其机制;4)稳定、重复、可逆的纳米尺度电导转变与超高密度信息存储;5)固体表面上单分子自旋态的量子调控及其原理性应用;6)原子尺度上朗德g因子的空间分辨及其空间分布不均匀性的发现;7)晶圆尺寸、高质量、单晶石墨烯的制备及原位硅插层绝缘化;8)几种新型二维原子晶体材料的可控构筑及其物性调控;9)"自然图案化"的新型二维原子晶体材料及其功能化.这些工作为低维量子结构的构造、物性调控及其原理性应用奠定了基础.  相似文献   

6.
利用扫描隧道显微镜可以在单原子层次上对材料进行操纵,改变其结构与特性,实现原子级结构与物性的精准调控.近年来,扫描隧道显微镜原子操纵技术被广泛用于新型低维材料的精准构筑与物性调控.本文主要介绍应用原子操纵技术对低维材料物性调控的最新研究进展,总结了4种主要探针操纵模式:1)探针局域电场模式; 2)调节探针-样品垂直间距模式; 3)无损形态调控模式; 4)可控裁剪刻蚀模式.通过这些探针操纵模式引入局域的电场、磁场、应力场等,实现在单原子层次上对低维材料的电荷密度波、近藤效应、非弹性隧穿效应、马约拉纳束缚态等新奇物性进行精准地调控.  相似文献   

7.
江德生 《物理》2005,34(7):521-527
人们对半导体中的电子空穴对在库仑互作用下形成的激子态及其有关的物理性质进行了深入研究.激子效应对半导体中的光吸收、发光、激射和光学非线性作用等物理过程具有重要影响,并在半导体光电子器件的研究和开发中得到了重要的应用.与半导体体材料相比,在量子化的低维电子结构中,激子的束缚能要大得多,激子效应增强,而且在较高温度或在电场作用下更稳定.这对制作利用激子效应的光电子器件非常有利.近年来量子阱、量子点等低维结构研究获得飞速的进展,已大大促进了激子效应在新型半导体光源和半导体非线性光电子器件领域的应用.  相似文献   

8.
低维硅锗材料是制备纳米电子器件的重要候选材料,是研发高效率、低能耗和超高速新一代纳米电子器件的基础材料之一,有着潜在的应用价值。采用密度泛函紧束缚方法分别对厚度相同、宽度在0.272 nm~0.554 nm之间的硅纳米线和宽度在0.283 nm~0.567 nm之间的锗纳米线的原子排布和电荷分布进行了计算研究。硅、锗纳米线宽度的改变使原子排布,纳米线的原子间键长和键角发生明显改变。纳米线表层结构的改变对各层内的电荷分布产生重要影响。纳米线中各原子的电荷转移量与该原子在表层内的位置相关。纳米线的尺寸和表层内原子排列结构对体系的稳定性产生重要影响。  相似文献   

9.
铁电体具有可控的非易失电极化,在现代电子学中有着广泛的应用,例如大容量电容器、新型二极管、铁电场效应晶体管、铁电隧道结等.伴随着电子元器件的不断微型化,传统铁电体面临着极大的挑战,即在器件减薄过程中受限于临界尺寸效应,铁电性很难稳定存在于纳米乃至单原子层二维极限厚度下.鉴于二维范德华材料具有界面饱和、层间相互作用弱、易于实现二维极限厚度等特性,因此,在二维材料家族中寻找室温二维铁电性将是解决传统铁电体瓶颈的有效方法.本文将首先回顾近年来二维铁电物性研究的相关背景,并针对其中在技术应用上较为重要的α-In_2Se_3面外铁电性作详细介绍,最后总结基于二维α-In_2Se_3的铁电器件应用进展.  相似文献   

10.
低维超导材料由于具有尺度接近量子临界尺寸的优势,能够观测到显著的超导量子振荡效应,因此成为研究超导量子振荡效应的优异平台.由于这些量子振荡效应的周期、振幅、相位与磁通涡旋的量子化及运动方式、超导电子的配对机制、特定外部条件下超导体中的涨落和激发现象密切相关,并且它们还能直观地反映超导材料的几何结构对其超导物性的影响,因此对低维超导体中振荡效应的研究直接反映了超导体的本质规律,成为研究材料超导机制的一种重要手段,有着深邃的物理内涵和丰富的研究价值.本文将探讨三类能够在低维超导材料中观测到的典型超导量子振荡效应:利特尔-帕克斯效应、磁通涡旋运动导致的振荡效应和韦伯阻塞效应,从研究手段、理论预期、实验现象以及实验结果诸方面综述其中所揭示的深刻物理规律,并展望低维超导体的量子振荡效应在量子计算、器件物理和低温物理等领域的应用价值.  相似文献   

11.
Single-element two-dimensional (2D) tellurium (Te) which possesses an unusual quasi-one-dimensional atomic chain structure is a new member in 2D materials family. 2D Te possesses high carrier mobility, wide tunable bandgap, strong light-matter interaction, better environmental stability, and strong anisotropy, making Te exhibit tremendous application potential in next-generation electronic and optoelectronic devices. However, as an emerging 2D material, the research on fundamental property and device application of Te is still in its infancy. Hence, this review summarizes the most recent research progresses about the new star 2D Te and discusses its future development direction. Firstly, the structural features, basic physical properties, and various preparation methods of 2D Te are systemically introduced. Then, we emphatically summarize the booming development of 2D Te-based electronic and optoelectronic devices including field effect transistors, photodetectors and van der Waals heterostructure photodiodes. Finally, the future challenges, opportunities, and development directions of 2D Te-based electronic and optoelectronic devices are prospected.  相似文献   

12.
Recent advances in atomically thin two-dimensional (2-D) materials have led to a variety of promising future technologies for post-CMOS nanoelectronics and energy generation. This review is an attempt to thoroughly illustrate the current status and future prospects for 2-D materials other than graphene (e.g., BN nanosheets, MoS2, NbSe2, WS2, etc.), which have already been contemplated for both low-end and high-end technological applications. An overview of the different synthesis techniques for 2-D materials is presented here, with an exploration of the potential for developing methods of controllable large scale synthesis. Furthermore, we summarize the underlying theories which correlate the structural and physical properties of 2-D materials with their state-of-the-art applications. Finally, we show that utilizing the unprecedented properties arising from these materials would lead to innovative devices. Such devices would significantly reduce both device dimensions and power consumption, as necessary for the creation of tomorrow's sustainable technology.  相似文献   

13.
钟虓䶮  李卓 《物理学报》2021,(6):199-216
原子表征与操控是实现原子制造必须突破的物理瓶颈之一.像差校正电子显微学方法因其优异的空间分辨率,为实现原子精细制造提供了有力的表征手段.因此,利用电子显微学手段,在原子尺度对原子制造的材料及器件进行三维结构和性能的协同表征,对于深入理解原子水平材料操控的物理机理具有非常重要的意义.纳米团簇及纳米颗粒是原子制造材料与器件研究的主要对象之一,具有丰富的物理化学性质和较高的可操纵性.本文探讨纳米团簇/颗粒结构三维定量表征、使役条件下纳米团簇/颗粒结构演变定量表征、纳米颗粒/晶粒结构-成分-磁性协同定量表征等诸多方法与实例,阐明了电子显微学表征手段的突破和发展为实现精细控制的原子制造材料提供了坚实基础.  相似文献   

14.
DNA折纸结构介导的多尺度纳米结构精准制造   总被引:1,自引:0,他引:1       下载免费PDF全文
原子及近原子尺度制造在近年来一直是物质科学领域被广泛探讨的前沿问题.当制造和加工的尺度从微米、纳米逐渐走向原子级别时,材料在常规尺度下所具备的性质已无法通过经典理论进行解释,相反地,会在这一尺度下展现出一系列新奇的特性.因而对材料极限制造尺度和颠覆性物性的不断追求始终是科学界共同关注的重点领域.作为一种在纳米尺度下对结构制造单元进行精细操控的先进手段,DNA纳米技术的开发和发展为纳米制造甚至原子制造提供了新的观点和思路,而DNA折纸术作为DNA纳米技术的重要组成部分,正在凭借其在结构制造过程当中的高度可编程性成为纳米尺度下进行各类物质精准制造的独特的解决方案,并可能为不同物质不同材料更小尺度和任意形状的精准构筑带来机遇.本文首先简单概述了DNA折纸术的基本原理和发展历程,然后根据制造策略的不同对DNA折纸结构的纳米制造的相关代表性工作做了总结,并在文末提出了对于DNA折纸结构在原子制造中的可行性的思考和未来发展方向的展望.  相似文献   

15.
人为操控电子的内禀自由度是现代电子器件的核心和关键.如今电子的电荷和自旋自由度已经被广泛地应用于逻辑计算与信息存储.以二维过渡金属硫属化合物为代表的二维原子层材料由于其具有独特的谷自由度和优异的物理性质,成为了新型谷电子学器件研究的优选材料体系.本文介绍了能谷的基本概念、谷材料的基本物理性质、谷效应的调控和谷电子学器件的研究进展,并对谷电子学材料和器件的研究进行了总结与展望.  相似文献   

16.
Transition-metal chalcogenides (TMCs) materials have attracted increasing interest both for fundamental research and industrial applications. Among all these materials, two-dimensional (2D) compounds with honeycomb-like structure possess exotic electronic structures. Here, we report a systematic study of TMC monolayer AgTe fabricated by direct depositing Te on the surface of Ag(111) and annealing. Few intrinsic defects are observed and studied by scanning tunneling microscopy, indicating that there are two kinds of AgTe domains and they can form gliding twin-boundary. Then, the monolayer AgTe can serve as the template for the following growth of Te film. Meanwhile, some Te atoms are observed in the form of chains on the top of the bottom Te film. Our findings in this work might provide insightful guide for the epitaxial growth of 2D materials for study of novel physical properties and for future quantum devices.  相似文献   

17.
近年来,二维材料独特的物理、化学和电子特性受到了越来越多的科研人员的关注.特别是石墨烯、黑磷和过渡金属硫化物等二维材料具有优良的光电性能和输运性质,使其在下一代光电子器件领域具有广阔的应用前景.本文将主要介绍二维材料在光电探测领域上的应用优势,概述光电探测器的基本原理和参数指标,重点探讨光栅效应与传统光电导效应的区别,以及提高光增益和光响应度的原因和特性,进而回顾光栅局域调控在光电探测器中的最新进展及应用,最后总结该类光电探测器面临的问题及对未来方向的展望.  相似文献   

18.
杨硕  程鹏  陈岚  吴克辉 《物理学报》2017,66(21):216805-216805
硅烯是一种零能隙的狄拉克费米子材料,对其能带结构的有效调控进而打开带隙是硅烯进一步器件化的基础.而化学功能化是调控二维材料的结构和电子性质的一种有效方法.本文简要介绍了近几年在硅烯的化学功能化方面取得的进展,主要包括硅烯的氢化、氧化、氯化以及其他几种可能的化学修饰方法.  相似文献   

19.
刘梦溪  张艳锋  刘忠范 《物理学报》2015,64(7):78101-078101
石墨烯-六方氮化硼面内异质结构因可调控石墨烯的能带结构而受到广泛关注. 本文介绍了在超高真空体系内, 利用两步生长法在两类对石墨烯分别有强和弱电子掺杂的基底, 即Rh(111)和Ir(111)上制备石墨烯-六方氮化硼单原子层异质结构. 通过扫描隧道显微镜及扫描隧道谱对这两种材料的形貌和电子结构进行研究发现: 石墨烯和六方氮化硼倾向于拼接生长形成单层的异质结构, 而非形成各自分立的畴区; 在拼接边界处, 石墨烯和六方氮化硼原子结构连续无缺陷; 拼接边界多为锯齿形型, 该实验结果与密度泛函理论计算结果相符合; 拼接界面处的石墨烯和六方氮化硼分别具有各自本征的电子结构, 六方氮化硼对石墨烯未产生电子掺杂效应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号