首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yb :YAG晶体的闪烁特性   总被引:1,自引:0,他引:1  
通过不同Yb3+掺杂浓度(5%~30%,原子数分数)的Yb:YAG晶体的阴极射线发光谱、衰减时间、光输出及其温度依赖关系的测量,研究了Yb:YAG晶体的闪烁性能.不同Yb3+掺杂浓度的Yb:YAG晶体具有不同的光输出和猝灭温度,光输出随Yb3+掺杂浓度的增大而降低,猝灭温度则随掺杂浓度的增大而升高.室温下Yb:YAG晶体的发光衰减时间较短,均小于50ns.Yb3+掺杂浓度为5%的Yb:YAG晶体具有较高的光输出和较低的猝灭温度.  相似文献   

2.
Er3+/Yb3+共掺杂铋酸盐玻璃的上转换发光和能量传递   总被引:3,自引:2,他引:1       下载免费PDF全文
用高温熔融法制备了Er3+/Yb3+共掺杂的45Bi2O3-45GeO2-10PbO玻璃,对玻璃样品进行了光谱测试,分析了上转换发光机制和Yb3+→Er3+的能量传递效率。通过Yb3+离子浓度对Er3+离子在铋酸盐玻璃中的上转换荧光强度影响的研究,得到Er3+质量分数为0.5%以及Yb3+质量分数为2.5%时上转换发光强度最大。研究结果表明,在970nm泵浦激发下,Er3+/Yb3+共掺杂B45G45P10玻璃在532,545,673nm处产生较强的上转换绿光和红光,是一种较为理想的上转换发光基质材料。  相似文献   

3.
采用高温固相反应法合成了YAG: 0.02Cr3+,yYb3+系列粉末材料,研究了该系列材料在近红外区域的发光特性,主要包括Cr3+,Yb3+的发光性质、Cr3+: 4T2和Yb3+: 2F5/2能级辐射跃迁寿命以及其布居时间的比较,给出了Yb3+最佳掺杂量为10%。实验表明:通过Cr3+→Yb3+能量传递,实现了Yb3+在1 000 nm附近近红外发光的增强,这对进一步提高c-Si太阳能电池转换效率打下了坚实基础。  相似文献   

4.
Yb3+/Er3+共掺杂TeO2-WO3-ZnO玻璃的光谱性质   总被引:3,自引:3,他引:0  
制备了Yb3+/Er3+共掺杂的TeO2-WO3-ZnO玻璃,测量了Er3+在玻璃中的吸收光谱和970nmLD激发下的荧光光谱、荧光寿命和上转换光谱.计算了Yb3+/Er3+间的能量传递效率和Er3+离子1.5μm波段的吸收截面、发射截面,并研究了其荧光强度和上转换发光与Yb3+掺杂浓度间的关系.结果表明,Yb3+共掺杂可明显提高Er3+离子1.5μm发射的荧光强度,实验所得Yb3+离子的最佳掺杂浓度为Er3+离子浓度的3倍,在7.28×1020ions/cm3左右.Er3+离子1.5μm发射的荧光半峰全宽为67~72nm;上转换红、绿光均为双光子过程,随Yb3+掺杂浓度的增加,上转换红、绿光强度均增强.  相似文献   

5.
为了获得BaY_2ZnO_5:Tm~(3+)/Yb~(3+)荧光粉材料的最大蓝色上转换发光强度,采用正交试验设计与二次通用旋转组合设计相结合的两步连续优化法对Tm~(3+)和Yb~(3+)掺杂浓度进行全局优化,得到该体系最强蓝光发射下的离子掺杂最佳浓度.采用高温固相反应法合成出蓝色上转换发光强度最强的BaY_2ZnO_5:Tm~(3+)/Yb~(3+)荧光粉材料,并对样品的晶体结构和上转换发光性质进行了研究.980nm红外光激发下,测量了最优样品在不同激发电流下的上转换发射光谱,由强度制约关系确定样品的蓝色上转换发光为三光子过程.测量了最优样品温度相关的上转换发射光谱,发现样品的蓝色上转换发光强度随着样品温度的升高而持续减弱,即发生了温度猝灭现象,计算得激活能约为0.602eV.  相似文献   

6.
毛鑫光  王俊  沈杰 《物理学报》2014,63(8):87803-087803
采用射频磁控溅射法制备得到Er~(3+)/Yb~(3+)TiO_2薄膜,980 nm的抽运源作用下上转换可以得到490 nm的绿光和670 nm的红光,上转换红、绿光发光强度受到烧绿石Er_xYb_(2-x)Ti_2O_7晶体的生成以及Er~(3+)/Yb~(3+)掺杂浓度的影响,实验表明,适量共掺杂Er~(3+)/Yb~(3+)可明显增强上转换发光,Er~(3+)在上转换发光中起主要作用,而引入敏化离子Yb~(3+)可以大大提高上转换发光效率,磁控溅射法制备的TiO_2薄膜声子态密度较小,从而抑制了无辐射跃迁过程,导致490nm绿光形成以及红光强度大于绿光强度。  相似文献   

7.
为得到绿光和红光最大发光强度的Er3+/Yb3+共掺BaGd2ZnO5上转换材料荧光粉, 首先采用试验优化设计中的均匀设计初步寻找Er3+/Yb3+合理的掺杂浓度; 其次通过二次通用旋转组合设计进一步优化实验, 建立起Er3+/Yb3+掺杂浓度与绿光和红光发光强度的回归方程; 最后通过遗传算法计算出方程的最优解, 即绿光和红光最大发光强度时对应的Er3+/Yb3+掺杂浓度. 利用传统的高温固相法分别制备出最优样品. 采用X 射线衍射对得到荧光粉的晶体结构进行了分析, 证明了所有产物均为纯相BaGd2ZnO5. 采用980 nm抽运激光作为激发源, 在同样的条件下测量了样品的上转换荧光发射光谱, 从中可见样品有较强的红光发射和绿光发射, 发光中心位于662, 551和527 nm, 分别对应于4F9/24I15/2, 4S3/24I15/22H11/24I15/2能级跃迁. 研究了绿光和红光最优样品的上转换发光强度与激光器工作电流之间的关系, 通过分析发现红色和绿色上转换发光均为双光子过程. 由归一化的绿色上转换发射光谱可以看出, 激光器工作电流导致的样品温度变化可以忽略不计. 由于能级2H11/24S3/2之间存在热平衡, 并满足玻尔兹曼分布, 由此探讨了绿光最优样品上转换发射光谱中的绿色发射与温度的关系, 计算出2H11/24S3/2之间的能级差为ΔE=926.11 cm-1. 研究了绿光最优样品的温度效应, 随着温度的升高, 发射强度逐渐变小, 出现了温度猝灭现象. 并计算了样品的激活能, 分别为总体激活能ΔE=0.45 eV, 绿光激活能ΔE绿=0.45 eV, 红光激活能ΔE=0.46 eV.  相似文献   

8.
利用高温热溶剂法合成了不同Yb3+和Tm3+掺杂浓度的NaYF4:Yb3+,Tm3+上转换发光纳米粒子。利用扫描电子显微镜、X射线衍射分析、荧光光谱对样品进行形貌和发光性质的表征。结果表明,不同Yb3+和Tm3+离子掺杂浓度对纳米粒子的上转换发光性质有很大影响。随着Tm3+离子浓度的提高,Tm3+离子之间的浓度猝灭和交叉弛豫效应对发光强度的影响愈来愈显著,导致纳米粒子的发光猝灭;同样,随着Yb3+浓度的提高,纳米粒子的发光强度也是先增大后减小,这是因为Yb3+离子浓度掺杂过高导致发光猝灭。  相似文献   

9.
采用溶胶-凝胶法制备了含有不同Yb3+,Er3+掺杂浓度的BaGd2ZnO5上转换发光材料,测量了这些样品在不同激发光密度下的上转换光发射功率及上转换效率。实验结果表明:在不同激发光密度下,所有样品的光发射功率都存在极大值,其中Yb3+掺杂摩尔分数为4%,Er3+掺杂摩尔分数为1%时样品的最大发射光功率可达20 mW;样品的上转换绝对效率也存在极大值,随着Yb3+和Er3+浓度增加,绝对效率的极大值向较低激发光密度方向移动,在Yb3+掺杂摩尔分数为9%,Er3+掺杂摩尔分数为3%时样品的上转换效率达到最高,绝对效率为3.2%,极值效率最大值为6.9%。  相似文献   

10.
杨健芝  邱建备  杨正文  宋志国  杨勇  周大成 《物理学报》2015,64(13):138101-138101
本文采用高温固相反应法制备了Ba5SiO4Cl6: Yb3+, Er3+, Li+ 荧光粉, 并对其上转换发光性质及其发光机理进行了研究. 在980 nm 激光的激发下, Ba5SiO4Cl6: Yb3+, Er3+ 荧光粉呈现较强的红色(662 nm) 和较弱的绿色(550 nm) 的上转换发光, 红色和绿色的上转换发光分别对应于Er3+ 离子的4S3/2/2H11/24I15/24F9/24I15/2 跃迁, 且随着掺杂的Er3+ 和Yb3+ 离子浓度增加, 样品的上转换发光强度增加, 这是因为Yb3+ 离子和Er3+ 离子之间的能量传递效率增加引起的. 在0.5—0.8 W 功率激发下,样品属于双光子发射, 而在0.9—1.2 W 功率激发下样品具有新的上转换发光机理——光子雪崩效应. 探讨了Li+ 掺杂对Ba5SiO4Cl6: Yb3+, Er3+ 样品的上转换发光性质的影响, Li+ 离子的掺杂引起Ba5SiO4Cl6:Yb3+, Er3+ 上转换发光强度增加, 这是由于Li+ 离子的掺入降低了晶体场的对称性引起的.  相似文献   

11.
杨艳民  张娇  苏献园  米超  李晓红  于芳  李志强 《发光学报》2013,34(12):1585-1590
采用溶胶-凝胶法制备了Yb3+/Er3+共掺杂BaGd2O4上转换荧光粉。研究了退火温度对BaGd2O4晶体结构的影响,以及Yb3+/Er3+共掺杂的BaGd2O4荧光粉在971 nm LED激发下,激发密度与上转换发射光功率及效率的关系。研究结果表明,尽管BaGd2O4与目前报道效率最高的Yb3+/Er3+共掺杂BaGd2ZnO5基质的最高声子能量相同,但光-光转换效率却相差82倍,极值量子效率相差7.8倍。结论认为,在声子能量不是很高的情况下,材料结构是影响上转换效率的主要因素。  相似文献   

12.
上转换发光材料由于低的发光效率,限制了其在太阳电池中的实际应用。为解决此问题,采用溶剂热法制备了LiYF4:Er3+/Yb3+上转换发光颗粒,在LiYF4基质中引入Na+来打破Er3+周围晶体场的对称性,增强其发光性能。研究了Na+掺杂对LiYF4:Er3+/Yb3+的结构、形貌及其发光的影响。结果表明:掺杂的Na+可以裁剪Er3+周围的晶体场,当Na+摩尔分数为15%时,得到了较大的发光增强,绿光和红光发射分别获得4.2倍和2.9倍的增强。Er3+周围晶体场对称性的降低和材料中OH基团的减少是其发光增强的主要原因。  相似文献   

13.
采用水热法制备了一系列不同掺杂浓度的NaGdF4:Re(Re=Tm3+,Er3+,Yb3+)上转换发光粉。通过X射线衍射(XRD)、电子扫描电镜(SEM)和上转换发射光谱对样品进行了表征。XRD研究结果表明:合成的样品均为六方结构NaGdF4。估算的平均晶粒尺寸为41~43 nm。在980 nm红外光激发下,Er3+和Yb3+共掺杂的NaGdF4发光粉发出分别来自于Er3+离子2H11/ 2,4S3/24I15/2跃迁的绿光和4F9/24I15/2跃迁的红光发射,Tm3+和Yb3+共掺杂的NaGdF4发光粉发出分别来自Tm3+离子的1G43H6跃迁的蓝光、1G43F43F2,33H6跃迁的红光和3H43H6跃迁的近红外光发射。Er3+,Tm3+和Yb3+共掺杂的NaGdF4发光粉的发光强度及红、绿、蓝光发射的相对强度受Yb3+离子掺杂浓度的影响。对样品中可能的上转换发光机制进行了讨论。计算的色坐标显示:可通过改变掺杂离子浓度对上转换发光的颜色进行调控。  相似文献   

14.
潘成龙  刘红利  郭芸  景姝  孙静  周禾丰  王华 《物理学报》2014,63(15):154211-154211
采用反向共沉淀法制备了形貌呈棒状的BaMgF4:Er3+,Yb3+上转换纳米晶.样品在980 nm半导体激光器激发下发射绿色和红色上转换荧光,其发射的绿、红发射带归因于Er3+离子的2H11/2—4I15/2,4S3/2—4I15/2和4F9/2—4I15/2跃迁.当Er3+的掺杂浓度为3%,Yb3+离子掺杂浓度为10%时,荧光粉的上转换发光强度最强;随着Yb3+离子浓度的增加样品的红光发射增强,绿光发射减弱.通过上转换发光强度与抽运电流关系曲线的拟合,得出BaMgF4:Er3+,Yb3+上转换材料的绿光与红光的上转换过程均为双光子吸收过程.  相似文献   

15.
林治全  于春雷  何冬兵  冯素雅  张磊  陈丹平  胡丽丽 《物理学报》2017,66(16):164204-164204
以970 nm和808 nm半导体激光器作为抽运源,从光纤长度和抽运功率两个方面,探讨了Nd~(3+)/Yb~(3+)摩尔浓度比约为4:1的共掺磷酸盐玻璃光纤的发光与激光特性.在970 nm抽运下,光纤光谱以Yb~(3+)离子的发光为主,但Yb~(3+)→Nd~(3+)能量传递会对光纤光谱(激光和受激放大自发辐射)产生调制作用,调制作用随970 nm抽运功率或光纤长度的增加而显著,甚至出现显著的双波长激光现象.尽管玻璃样品中Nd~(3+)→Yb~(3+)的能量传递效率ηNd→Yb高达64%,但在808 nm抽运下,激光峰始终在1053 nm附近产生,且与808 nm抽运功率大小和光纤长度无关.为解释这一现象,推导了考虑Nd~(3+)离子受激辐射的能量传递模型.从理论模型来看,Nd~(3+)→Yb~(3+)能量传递作用随Nd~(3+)离子受激辐射信号光强度的增加而迅速减弱,这与该光纤实际测试的荧光光谱随808 nm抽运功率的变化规律相符合.因此,当采用Nd~(3+)离子来敏化Yb~(3+)离子时,需要考虑Nd~(3+)离子的受激辐射对Nd~(3+)→Yb~(3+)能量传递的抑制作用.  相似文献   

16.
曹健  张霞  郝振东  张家骅 《发光学报》2011,32(12):1233-1237
采用水热法通过调控n(F-):n(Ln3+),pH值以及n(Citrate):n(Ln)等一系列反应条件,合成了六方相的NaGdF4:Yb3,ho3+与GdF3:yb3+,Ho3+纳米上转换材料,实现了形貌的可控合成.利用X射线粉末衍射(XRD),场扫描电子显微镜(SEM)以及发光光谱等手段对产物的物相结构、形貌和荧光...  相似文献   

17.
采用CO_(2)激光区熔法制备了Lu_(2)O_(3)∶0.5%Er^(3+)/x%Yb^(3+)(x=1,3,5)上转换荧光材料。X射线衍射结果表明,所制备的Lu_(2)O_(3)∶Er^(3+)/Yb^(3+)荧光材料具有纯Lu_(2)O_(3)晶相。在980 nm激光激发下,样品发出明亮的上转换荧光。光谱测试结果表明,样品上转换荧光强度和荧光中绿光与红光比例随Yb^(3+)离子浓度改变,当Er^(3+)和Yb^(3+)离子浓度分别为0.5%和3%时,样品上转换荧光强度最强。通过荧光强度比(FIR)技术研究了样品Lu_(2)O_(3)∶0.5%Er^(3+)/3%Yb^(3+)在298~873 K温度范围内上转换荧光温度传感特性,在532.8 K时最大绝对灵敏度为0.0060 K^(-1),在298 K时最大相对灵敏度为0.0090 K^(-1)。结果表明,Lu_(2)O_(3)∶Er^(3+)/Yb^(3+)荧光材料非常适合用于宽温度范围荧光温度传感。  相似文献   

18.
采用共沉淀法合成了LaF3∶Ho3+,Yb3+ 红外下转换材料,研究了室温下该材料的激发光谱、发射光谱特性和发光的时间衰减曲线。在LaF3∶Ho3+,Yb3+ 粉末中,观察到了Ho3+ 到Yb3+ 的能量传递,并通过分析确认了其为共振能量传递。通过Ho3+ 到Yb3+ 的共振能量传递过程,可以将材料吸收一个300~360 nm波段的紫外光子转化为两个波长在1 μm附近的红外光子。Yb3+ 的发射正好与硅太阳能电池的吸收匹配,材料中的这一红外下转换现象对于提高硅太阳能电池的效率具有积极意义。  相似文献   

19.
杨永馨  徐征  赵谡玲  梁志琴  朱薇  张俊杰 《中国物理 B》2017,26(8):87801-087801
Different concentrations of Mg~(2+) -doped hexagonal phase NaGdF_4:Yb~(3+), Er~(3+)nanocrystals(NCs) were synthesized by a modified solvothermal method. Successful codoping of Mg~(2+)ions in upconversion nanoparticles(UCNPs) was supported by XRD, SEM, EDS, and PL analyses. The effects of Mg~(2+)doping on the morphology and the intensity of the upconversion(UC) emission were discussed in detail. It turned out that with the concentration of Mg~(2+)increasing, the morphology of the nanoparticles turn to change gradually and the UC emission was increasing gradually as well. Notably the UC fluorescence intensities of Er~(3+)were gradually improved owing to the codoped Mg~(2+)and then achieved a maximum level as the concentration of Mg~(2+)ions was 60 mol% from the amendment of the crystal structure of β-NaGdF_4:Yb~(3+),Er~(3+)nanoparticles. Moreover, the UC luminescence properties of the rare-earth(Yb3+, Er~(3+)) ions codoped NaGdF_4 nanocrystals were investigated in detail under 980-nm excitation.  相似文献   

20.
付姚  冷静  邢明铭  田莹  罗昔贤 《发光学报》2017,38(5):561-566
采用高温固相法成功制备了Ca3Y2Si3O12:Tm3+,Yb3+上转换蓝色发光材料。在980 nm 红外激光器激发下,发光粉呈现强烈的蓝光(475 nm)和近红外光(810 nm)以及较弱的红光(650 nm)发射,分别归因于Tm3+离子的1G43H63H43H61G43F4能级跃迁。随着Yb3+离子浓度的增加,发光粉上转换发射强度和发光亮度均呈现先增强后减弱的变化趋势。在最佳掺杂浓度下(Yb3+摩尔分数为15%),蓝、红光强度分支比为12:1,色坐标为(0.129 2,0.152 3)。在3.9 W/cm2激发功率密度下,发光亮度可达6.8 cd/m2。上述结果证实,所制备发光粉呈现优异的蓝光上转换发射特性并具有潜在的应用价值。发光强度和激发光功率关系表明,所得上转换发射为三光子和双光子吸收过程。借助Tm-Yb体系能级结构详细讨论了上转换发射的跃迁机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号