首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Several crosslinked proton exchange membranes with high proton conductivities and low methanol permeability coefficients were prepared, based on the sulfonated poly[(4-fluorophenoxy)(phenoxy)] phosphazene(SPFPP) and newly synthesized water soluble sulfonated poly(cyclophosphazene)(SPCP) containing clustered flexible pendant sulfonic acids. The structure of SPCP was characterized by fourier transform infrared spectroscopy(FTIR) and ~1H NMR spectra. The membranes showed moderate proton conductivities and much lower methanol permeability coefficients when compared to Nafion 117. Transmission electron microscopy(TEM) results indicated the well-defined phase separation between the locally and densely sulfonated units and hydrophobic units, which induced efficient proton conduction. In comparison with SPFPP membrane, the proton conductivities, oxidative stabilities and mechanical properties of crosslinked membranes remarkably were improved. The selectivity values of all the crosslinked membranes were also much higher than that of Nafion 117(0.74×10~5S· s/cm~3). These results suggested that the c SPFPP/SPCP membranes were promising candidate materials for proton exchange membrane in direct methanol fuel cells.  相似文献   

2.
张奇峰 《高分子科学》2015,33(9):1225-1233
A series of cardo poly(aryl ether sulfone) copolymers bearing pendent sulfonic acid groups(SPES-X) have been prepared by a facile chemical graft method. The structure was confirmed by 1H-NMR spectra. The side-chain-type SPES-X membranes show significantly reduced swelling behavior and excellent mechanical properties as well as appropriate proton conductivity compared to the main-chain-type sulfonated polymers with similar ion exchange capacity(IEC) value. Moreover, they show methanol permeability in the range of 0.6 × 10-7-5.7 × 10-7 cm2/s which is lower than that of Nafion 117. All the results indicate that the SPES-X membranes are promising candidates for the direct methanol fuel cells.  相似文献   

3.
The proton exchange membranes(PEMs) were prepared through the solution mixing method of sulfonated poly(etlier ether ketone ketoneXsPEEKK) and cellulose. Cellulose was dissolved by 1-ally 1-3-methylimidazolium chioride(AMIMC1) and then mixed with sPEEKK solution. sPEEKK/cellulose(SC) composite membranes were prepared by solution casting. The membranes have high flexibility and transparency, which meant the compounding in molecular level. Meanwhile, the composite membranes showed excellent mechanical properties and high proton conductivity. The mechanical property reached 29 MPa, and the proton conductivity was as high as 0.32 S/cm. Thus, as a kind of biomaterials, cellulose could be ail excellent reinforcing material for poly(aryl ether ketone)(PAEK) based PEMs.  相似文献   

4.
Amphiphilic graft copolymers are excellent additives for the development of antifouling membranes by nonsolvent induced phase separation. We report a convenient approach to the synthesis of novel graft copolymers with hydrophobic polyacrylonitrile (PAN) backbones and hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) side chains. Atom transfer radical polymerization (ATRP) of 2-hydroxyethyl methacrylate was carried out with poly(acrylonitrile-co-p-chloromethyl styrene) (PAN-co-PCMS) as a macroinitiator in the presence of CuCl/2,2’-bipyridine at 50 °C in dimethyl sulfoxide. Kinetics of the graft polymerization was also evaluated. The synthesis of poly(acrylonitrile-co-p-chloromethyl styrene-g-2-hydroxyethyl methacrylate) (PAN-co-(PCMS-g-PHEMA)) can be relatively controlled when CMS (the ATRP sites) unit in the macroinitiator is around 5 mol%. Both the macroinitiators and graft copolymers were characterized by FTIR, NMR and GPC. The surface morphology and wettability of the copolymer films were studied by AFM and water contact angle measurement, respectively. We demonstrate that phase segregation between the PAN-co-PCMS backbones and the PHEMA side chains takes place and the surface hydrophilicity of the graft copolymers increases with the length of the PHEMA side chains. Because these amphiphilic graft copolymers can be synthesized in mass, they will be useful as latent additives for the fabrication of advanced PAN separation membranes.  相似文献   

5.
A novel sulfonated diamine monomer, 4,6-bis(4-arninophenoxy)-naphthalene-2-sulfonic acid(BAPNS), was synthesized. A series of sulfonated polyimide copolymers was prepared from BAPNS, 1,4,5,8-naphthalenetetracarboxylic dianhydride(NTDA) and nonsulfonated diamine 4,4'-diaminodiphenyl ether(ODA). Flexible, transparent, and mechanically strong membranes were obtained. The novel sulfonated polyimide(SPI) membranes show higher conductivity, for example, SPI-100 shows a conductivity of 0.0698 S/cm at 80℃(SPI-X: Xrefers to molar fraction of BAPNS). The membranes exhibit the permeability of methanol from 2.18×10^-7 cm2/s to 2.57×10^-7 cm2/s, which is much lower than that of Nafion(2.00×10 6 cm^2/s). The copolymers were thermally stable up to 330℃. The sulfonated polyimide copolymers also show reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 100%(molar fraction) BAPNS is 1.35 GPa under high moisture condi- tions. The optimum concentration of BAPNS was found to be 100%(molar fraction) from the view point of proton conductivity, methanol permeability, and membrane stability.  相似文献   

6.
高连勋 《高分子科学》2014,32(7):941-952
A series of sulfonated polyimide copolymers as novel proton exchange materials were synthesized by the polycondensation of 1,4,5,8-naphthalene-tetracarboxylic dianhydride(NTDA), sulfonated diamine based on pyridine group and diamine containing N-phenyl-1,2,4-triazole moiety. Flexible, transparent and tough membranes with high thermal stability and good mechanical properties were obtained. They exhibited good stability in boiling water and Fenton's reagent at 80 °C. More interestingly, a nonlinear relationship between proton conductivities of the resulting membranes and the degree of sulfonation(DS) was observed. The membrane with 50% DS exhibited the maximum proton conductivity, which was due to the combinational contributions of sulfonic acid and N-pheny-1,2,4-triazole groups. Thus, the N-phenyl-1,2,4-triazole moiety in this study not only can depress water absorption but also increase proton conductivity, especially at low DS.  相似文献   

7.
A series of novel organic-inorganic hybrid proton-conducting electrolyte membranes with silane-crosslinked sulfonated poly(aryl ether ketone)(SC-SPAEK) networks was prepared via a simple procedure that includes solution casting and acid treatment. The organosilicon pendants of the silane-grafted SPAEK, which were expected to serve as coupling and crosslinking agents, were found to play a key role in the homogenous dispersion of inorganic particles and improved the performance of hybrid membranes. The hybrid membranes exhibited enhanced proton conductivity, and SC-SPAEK/TiO2-4 showed an extremely high proton conductivity of 0.1472 S/cm at 100℃. The crosslinked hybrid membranes also demonstrated good chemical resistance, oxidative stability, and mechanical properties. The crosslinked hybrid membranes with excellent comprehensive performance may be a promising material for proton exchange membrane fuel cells.  相似文献   

8.
徐虎林  朱长进 《高分子科学》2014,32(8):996-1002
Poly(bis(phenoxy)phosphazene) (SPBPP)/phosphotungstic acid (PWA)/silica composite membranes for fuel cells were prepared. The composite membranes were characterized by using FTIR, TGA and SEM techniquies. Incorporation of PWA particles and silica particles into the SPBPP polymer matrix and a specific interaction between them were confirmed by FTIR spectra. TGA results showed that the composite membranes had high thermal stability. Homogeneous distribution of PWA and silica particles within the SPBPP matrix was verified by SEM micrographs. The doped membranes showed increased water uptake and proton conductivity.  相似文献   

9.
Composite membranes based on sulfonated silica/sulfonated poly(ether ether ketone)(SPEEK) were prepared by means of sol-gel method so as to gain a high conductivity and reasonable methanol permeability.The sulfonated silica is generated in situ via the hydrolysis of sulfonated 3-anminopropyl triethoxysilane(KH550) synthesized newly from 3-aminopropyl triethoxysilane and 1,4-butane sultone.The membrane with a silica mass fraction of 5% exhibits a conductivity of 0.187 S/cm at 80 °C and a methanol coefficient with 9.72×10-7 cm2/s.The composite membranes show improved condutive ability and better selectivity that can be promisingly used in direct methanol fuel cell.  相似文献   

10.
陈宇 《高分子科学》2013,31(7):1046-1055
Multiarm star block copolymers hyperbranched polyethylenimine-b-poly(2-hydroxyethyl methacrylate) (HPEI-b-PHEMA) with average 28 PHEMA arms have been prepared by atom transfer radical polymerization (ATRP) of HEMA in a mixed solvent of methanol and water using a core-first strategy. The hyperbranched macroinitiator employed was prepared on the basis of well-defined hyperbranched polyethylenimine with Mw/Mn of 1.04 by amidation with 2-bromo-isobutyryl bromide. The polymerization condition was optimized to prepare star copolymers with narrow dispersity, and the variables included the volume ratio of methanol to water, the molar ratio of initiating site to CuCl and the molar ratio of [CuCl]:[CuBr2]. Under the optimized polymerization condition, the lowest Mw/Mn value of the obtained star copolymers was around 1.3. Kinetic analysis showed that an induction period existed in the polymerization of HEMA. After this induction period, a linear dependence of ln([M]0/[M]t) on time was observed. The obtained HPEI-b-PHEMA could adsorb hydrophilic molecules. The comparison with the star copolymer with hydrophobic core and hydrophilic PHEMA shell verified that both the hydrophilic core and shell could host the hydrophilic guests, but the amidated HPEI core was more effective than the PHEMA shell.  相似文献   

11.
Isotactic polypropylene-based graft copolymers linking poly(methyl methacrylate), poly(n-butyl acrylate) and polystyrene were successfully synthesized by a controlled radical polymerization with isotactic polypropylene (iPP) macroinitiator. The hydroxylated iPP, prepared by propylene/10-undecen-1-ol copolymerization with a metallocene/methyl-aluminoxane/triisobutylaluminum catalyst system, was treated with 2-bromoisobutyryl bromide to produce a Br-group containing iPP (PP-g-Br). The resulting PP-g-Br could initiate controlled radical polymerization of methyl methacrylate, n-butyl acrylate and styrene by using a copper catalyst system, leading to a variety of iPP-based graft copolymers with a different content of the corresponding polar segment. These graft copolymers demonstrated unique mechanical properties dependent upon the kind and content of the grafted polar segment.  相似文献   

12.
Syndiotactic polystyrene graft copolymers, including syndiotactic-polystyrene-graft-poly(methyl methacrylate) and syndiotactic-polystyrene-graft-atactic-polystyrene, were synthesized by atom transfer radical polymerization (ATRP) using bromoacetylated syndiotactic polystyrene as macroinitiator and copper bromide combined with 2,2′-bipyridine as catalyst. The macroinitiator was prepared from the acid-catalyzed halogenation reaction of partially acetylated syndiotactic polystyrene, which was synthesized in a heterogeneous process with acetyl chloride and anhydrous aluminum chloride in carbon disulfide. The graft copolymers were characterized by 1H- and 13C-NMR spectra.  相似文献   

13.
The direct preparation of proton conducting poly(vinyl chloride) (PVC) graft copolymer electrolyte membranes using atom transfer radical polymerization (ATRP) is demonstrated. Here, direct initiation of the secondary chlorines of PVC facilitates grafting of a sulfonated monomer. A series of proton conducting graft copolymer electrolyte membranes, i.e. poly(vinyl chloride)‐g‐poly(styrene sulfonic acid) (PVC‐g‐PSSA) were prepared by ATRP using direct initiation of the secondary chlorines of PVC. The successful syntheses of graft copolymers were confirmed by 1H‐NMR and FT‐IR spectroscopy. The images of transmission electron microscopy (TEM) presented the well‐defined microphase‐separated structure of the graft copolymer electrolyte membranes. All the properties of ion exchange capacity (IEC), water uptake, and proton conductivity for the membranes continuously increased with increasing PSSA contents. The characterization of the membranes by thermal gravimetric analysis (TGA) also demonstrated their high thermal stability up to 200°C. The membranes were further crosslinked using UV irradiation after converting chlorine atoms to azide groups, as revealed by FT‐IR spectroscopy. After crosslinking, water uptake significantly decreased from 207% to 84% and the tensile strength increased from 45.2 to 71.5 MPa with a marginal change of proton conductivity from 0.093 to 0.083 S cm?1, which indicates that the crosslinked PVC‐g‐PSSA membranes are promising candidates for proton conducting materials for fuel cell applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
唐涛 《高分子科学》2014,32(3):333-349
Effects of branches on the crystallization kinetics of polypropylene-g-polystyrene(PP-g-PS) and polypropylene-gpoly(n-butyl acrylate)(PP-g-PnBA) graft copolymers with well-defined molecular structures were systematically investigated by DSC.The Avrami equation was used to analyze the isothermal crystallization process,while the analysis of nonisothermal crystallization process was based on the Jeziorny-modified Avrami model and Mo model.The kinetics results of isothermal and nonisothermal crystallization verified the peculiar effects of branches on the crystallization process of PP backbones in PP-g-PS and PP-g-PnBA graft copolymers:on one hand,the interaction between branches(π-π interaction between PS branches,or dipole-dipole interaction between PnBA branches) restrained the mobility and reptation ability of the PP backbones,which hindered the crystallization process;on the other hand,the heterogeneous nucleation effect resulting from the branched structure and fluctuation-assisted nucleation mechanism(caused by microphase separation between the PS or PnBA rich phase and the PP rich phase) became more pronounced with increasing branch length,which facilitated the crystallization process.  相似文献   

15.
The single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes is demonstrated. The graft copolymers of PVDF backbone with poly(sulfopropyl methacrylate) (PVDF-g-PSPMA) and poly(styrene sulfonic acid) (PVDF-g-PSSA) were synthesized using PVDF as a macroinitiator for atom transfer radical polymerization (ATRP). 1H NMR and FT-IR spectroscopy show that the “grafting from” method using ATRP was successful and the maximum grafting degrees were 35 and 25 wt% for PVDF-g-PSPMA and PVDF-g-PSSA, respectively. The IEC values were 0.63 and 0.45 meq/g, the water uptakes were 46.8 and 33.4 wt% and the proton conductivities were 0.015 and 0.007 S/cm at room temperature, for PVDF-g-PSPMA and PVDF-g-PSSA, respectively. Both membranes exhibited excellent thermal stability up to around 350 °C, verified by thermal gravimetric analysis (TGA).  相似文献   

16.
In this work, the evolution of the morphology of polypropylene/polystyrene/poly(methyl metacrylate) (PP/PS/PMMA) blends to which graft copolymers polypropylene-graft-polystyrene (PP-g-PS) of 2 compositions (55/45 and 70/30), polypropylene-graft-poly(methyl metacrylate) (PP-g-PMMA), or styrene-block-(ethylene- co-butadiene)-block-styrene (SEBS) was added has been studied. The ternary blends morphologies were predicted using phenomenological models that predict the morphology of ternary blends as a function of the interfacial tension between the blend components (spreading coefficient and free energy minimization). All blends studied presented a core-shell morphology with PS as shell and PMMA as core. The addition of PP-g-PS or SEBS resulted in a reduction of the size of the PS shell phase and, the addition of PP-g-PMMA did not seem to have any effect on the diameter of PMMA. The difference observed between the different morphologies relied on the number of droplets of core within the shell. All the phenomenological models predictions corroborated the experimental results, except when PP-g-PMMA was added to the blend.  相似文献   

17.
A combination of iridium‐catalyzed C H activation/borylation and atom transfer radical polymerization (ATRP) was used to generate polar graft copolymers of syndiotactic polystyrene (sPS). The borylation at aromatic C H bonds of sPS and subsequent oxidation of boronate ester proceeded without negatively affecting the molecular weight properties and the tacticity of sPS. A macroinitiator suitable for ATRP could be synthesized by the esterification of 2‐bromo‐2‐methylpropionyl bromide and hydroxy‐functionalized sPS. The graft polymerizations of methyl methacrylate and tert‐butyl acrylate from the macroinitiator using ATRP afforded polar block grafted sPS materials, syndiotactic polystyrene‐graft‐poly(methyl methacrylate) (sPS‐g‐PMMA) and syndiotactic polystyrene‐graft‐poly(tert‐butyl acrylate) (sPS‐g‐PtBA). The latter was hydrolyzed to yield an amphiphilic graft copolymer, syndiotactic polystyrene‐graft‐poly(acrylic acid) (sPS‐g‐PAA). The structures of the copolymers were characterized by NMR and FTIR spectroscopies. Size exclusion chromatography and 1H NMR spectroscopy were used to study any changes in the molecular weight properties from the parent polymer. A decrease in the hydrophobicity of the graft copolymers was confirmed by water contact angle measurements. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6655–6667, 2009  相似文献   

18.
PP-g-PS copolymers were synthesized with the same polypropylene (PP) backbones and various side chain lengths of PS sequences via reactive comonomer p-allyltoluene (p-AT) by Ziegler–Natta copolymerization and the subsequent living anionic graft-polymerization. 1H NMR characterized that the PP-g-PS copolymer had grafted 3.15 side chains per 1000 carbons in the PP backbones and the length of PS sequences varied in the range of 25.8–309.9 units. PP/PS blends with the PP-g-PS copolymer as compatibilizer (wt. 75/25/5) were prepared and characterized by SEM, WAXD and DMA to investigate the morphologies, crystallinity and glass transition temperatures of the PP/PS blends. All the results pointed out that the average side chain length (GL) of the graft copolymer (GL is from 25.8 to 309.9) made great effects of the PP/PS blends, such as the PS dispersed phase, the crystallinity of the PP component and the two glass transition temperatures of the blends, which showed the same trend with the increase of the GL. Overall, only with a suitable average side chain length, the PP-g-PS copolymer could achieve optimal compatibilizing efficiency of the PP/PS blends.  相似文献   

19.
Methanol permeation is the main issue of Nafion membranes when they are used as a polymer electrolyte membrane (PEM) in direct methanol fuel cells (DMFCs). In the current study, novel nanocomposite polymer membranes are prepared by the integration of surface-modified sepiolite (MS) in polyvinylidene fluoride grafted polystyrene (PVDF-g-PS) copolymer as PEM in DMFCs. Sepiolite (SP) surface is chemically modified using vinyltriethoxysilane and analyzed by Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite PVDF-g-PS/MS membranes are prepared by phase inversion technique and subsequently treated with chlorosulfonic acid to induce sulfonic acid (SO3H) active sites at the membrane surface. The prepared nanocomposite membranes (S-PPMS) are analyzed for their physicochemical characteristics in terms of water uptake percentage, cation exchange capacity, proton conductivity (σ), and methanol permeability. MS dispersion in the copolymer matrix is proved through morphological SEM examination. The S-PPMS membranes exhibit increased proton conductivity due to the presence of well-dispersed MS and surface functional –SO3H groups. A peak power density of 210 mWcm?2 is recorded for S-PPMS10 at 110 °C, which is higher than the output obtained from Nafion-117. These promising results indicate the potential utilization of prepared nanocomposite PEMs for DMFC application.  相似文献   

20.
《先进技术聚合物》2018,29(1):130-142
The possibility of developing low‐cost commercial grafted and sulfonated Poly(vinylidene fluoride) (PVDF‐g‐PSSA) membranes as proton exchange membranes for fuel cell applications have been investigated. PVDF‐g‐PSSA membranes were systematically prepared and examined with the focus of understanding how the polymer microstructure (degree of grafting and sulfonation, ion‐exchange capacity, etc) affects their methanol permeability, water uptake, and proton conductivity. Fourier transform infrared spectroscopy was used to characterize the changes of the membrane's microstructure after grafting and sulfonation. The results showed that the PVDF‐g‐PSSA membranes exhibited good thermal stability and lower methanol permeability. The proton conductivity of PVDF‐g‐PSSA membranes was also measured by the electrochemical impedance spectroscopy method. It was found that the proton conductivity of PVDF‐g‐PSSA membranes depends on the degree of sulfonation. All the sulfonated membranes show high proton conductivity at 92°C, in the range of 27 to 235 mScm−1, which is much higher than that of Nafion212 (102 mScm−1 at 80°C). The results indicated that the PVDF‐g‐PSSA membranes are particularly promising membranes to be used as polymer electrolyte membranes due to their excellent stability, low methanol permeability, and high proton conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号