首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A Cu/Cr2O3 catalyst was prepared by co-precipitation method, studied in methanol dehydrocoupling to methyl formate in different gas streams and characterized by BET, XRD, TPR, TPD of NH3 and CO2, etc. The results demonstrate that the catalyst can catalyze the dehydrocoupling of methanol to methyl formate in high efficiency,e. g. 99% selectivity to methyl formate at 48% conversion of methanol. The results further indicate that metallic copper might be the active species for the formation of methyl formate  相似文献   

2.
Zirconium (IV)-n-butoxide and tungstophosphoric acid (WP) were co-gelled at pH 3, 5 and 7 with HCl acid, C2H4O2 acid and NH4OH, respectively. Pyridine adsorption bands at 1610 and 1442 cm–1 corresponding to Lewis acidic sites were observed by FTIR spectroscopy. Acidity determined by ammonia thermodesorption shows values around 1100 mol of NH3/g, which correspond to solids showing super acidity. It was found that the incorporation of WP to gelling zirconia delay the formation of tetragonal zirconia. Raman spectroscopy shows the stabilization of the Keggin structure on zirconia thermally treated at 400°C.  相似文献   

3.
宋华  董鹏飞  张旭 《物理化学学报》2010,26(8):2229-2234
通过向SO2-4 /ZrO2催化剂中同时引入适量的Pt和Al2O3, 制备出了具有较高催化性能和稳定性的Pt-SO2-4 /ZrO2-Al2O3型固体超强酸催化剂. 以正戊烷异构化反应为探针, 考察了Al含量对催化剂性能的影响; 并采用X射线衍射(XRD)、比表面积测定(BET)、红外(IR)光谱、程序升温还原(TPR)、热重-差热分析(TG-DTA)和氨-程序升温脱附(NH3-TPD)手段对催化剂进行了表征. 结果表明, Al能够提高ZrO2的晶化温度, 抑制硫的分解, 增加催化剂的比表面积, 增强硫氧键的结合, 提高催化剂的还原性能, 增加催化剂的酸强度和酸总量. 当Al2O3含量(质量分数, w)为5.0%时, Pt-SO2-4 /ZrO2-Al2O3固体超强酸催化剂的催化活性最好, 在100 h内异戊烷收率可稳定在52.0%以上, 选择性在98.2%以上.  相似文献   

4.
Dispersion of molybdena on CeO2, ZrO2 (Tet), and a mixture of CeO2 and ZrO2 (Tet), was investigated by using laser Raman spectroscopy (LRS), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and temperature programmed reduction (TPR). The results indicate that molybdena is dispersed on both individual oxide support and mixed oxide support at the adopted molybdena loadings (0.2 and 0.8 mmol Mo6+/100 m2) and the structure of the supported molybdena species is intimate association with its loading amount. Two molybdena species are identified by Raman results, i.e. isolated MoO2−4 species at 0.2 mmol Mo6+/100 m2 and polymolybdate species at 0.8 mmol Mo6+/100 m2. IR spectra of ammonia adsorption prove that isolated MoO2−4 species are Lewis acid sites on the Mo/Ce and/or Zr samples, and the polymolybdate species are Brönsted acid sites on the Mo/Ce and/or Zr samples. Moreover, a combination of the Raman, IR and TPR results confirms that at 0.2 mmol Mo6+/100 m2 Ce + Zr, molybdena is preferentially dispersed on the surface of CeO2 when a mixed oxide support (CeO2 and ZrO2) is present, which was explained in term of the difference of the surface basicity between CeO2 and ZrO2 (Tet). Surface structures of the oxide supports were also taken into consideration.  相似文献   

5.
Hydrogen desorption, hydrogen spillover and reduction processes have been evidenced using a new experimental strategy based on AC electric conductivity measurements during TPD and TPR experiments on a 0.5% Pt/Al2O3 catalyst.  相似文献   

6.
Sol-gel zirconia-silica oxides were synthesized with two zirconium precursors, zirconium n-butoxide and zirconium acetylacetonate, and two different hydrolysis catalysts, HCl and H2SO4. The samples prepared with HCl were additionally sulfated with a 1 M solution of H2SO4. Characterization was performed with FTIR and 29Si-MAS-NMR spectroscopy, as well as with nitrogen adsorption. Because zirconium and silicon alkoxides have different hydrolysis rates, it was necessary to perform a pre-hydrolysis of the silicon alkoxide before mixing. The atom distribution in the ZrO2-SiO2 system depended on the zirconium precursor, which also determined the zirconium incorporation in the silica lattice, which was greater for zirconium acetylacetonate. The zirconium precursor also was responsible for the silanol concentration, which increases when samples were sulfated. Sulfating stabilizes the specific surface area. On sulfate samples calcined at 800°C BET areas larger than 500 m2/g were obtained.  相似文献   

7.
The present investigation focuses on the structural properties and reactivity of zirconia-supported vanadium oxide catalysts, prepared by equilibrium adsorption in basic (pH 10) or in acid (pH 2.7) conditions with vanadium content up to 6 wt.% (pH 10) and up to 11.6 wt.% (pH 2.7). The samples, heated at 823 K for 5 h in air, were characterized by X-ray diffraction, Raman spectroscopy and TPR, both as prepared and after leaching with an ammonia solution to remove species not anchored to the zirconia surface. Some representative samples were also tested for the n-butane oxidative dehydrogenation (ODH) reaction. Depending on vanadium content, various vanadium species were identified by Raman spectroscopy that reacted differently on exposure to H2. At similar loading, the fraction of vanadium in a dispersed state and thus interacting with the support was higher in samples prepared at pH 10 than in those at pH 2.7. Samples prepared at pH 2.7 contained a higher fraction of large polymeric structures in addition to ZrV2O7 and V2O5.In line with literature data for propane ODH on similar catalysts, our catalytic results suggested that the active sites for the ODH reaction are associated with the V–O–V bonds of the polymeric exposed structures, whereas the Zr–O–V sites favour alkane combustion.  相似文献   

8.
Recucibility of Mo species in Pt/MoO3 and PtMo/Al2O3 has been investigated by temperature-programmed reduction (TPR), temperature-programmed desorption of hydrogen (H2-TPD) and temperature programmed electronic conductivity (TPEC) techniques. In Pt/MoO3 at H2 atmosphere, it was found by TPEC and TPR that, a slight amount of Pt could activate the transfer of the species and H atoms between H2 and MoO3, and thus accelerate the reduction of MoO3. In PtMo/Al2O3, TPR and H2-TPD revealed that the reduction of surface Mo species could also be facilitated by Pt. Two kinds of hydrogen molybdenum species were proposed on the surface of the catalyst after prereduction.  相似文献   

9.
The influence of ZrO2 on the properties of Al2O3 and performances of Pd/Al2O3 catalyst in CO oxidation have been investigated. TPD results show that the activity enhanced is due to the increase of the adsorptive capacity of CO and the activation of C=O bond after the introduction of ZrO2.  相似文献   

10.
邓辉  蒋新 《无机化学学报》2011,27(1):119-124
利用吸附法原位制备CuO/SiO2、CuO-Ag/SiO2纳米复合物,研究了不同吸附质体系中预负载的纳米Ag粒子对CuO的影响。结果表明:Ag粒子对CuO的影响因吸附质的不同而不同。以Cu(Ac)2为吸附质,纳米Ag几乎没有影响;以NaOH为吸附质,纳米Ag使得CuO的晶粒粒径增大。这一结果与铜物种对Ag晶粒粒径的影响规律完全不同。通过比较不同吸附质的吸附行为,Cu(OH)2与硅胶表面的相互作用被认为是导致这一现象的原因。  相似文献   

11.
A series of CeO2/Al2O3 catalysts was modified with praseodymium oxide using an extrusion method. The catalytic activities of the obtained catalysts were measured for the selective catalytic reduction of NO with NH3 to screen suitable addition of praseodymium oxide. These samples were characterized by XRD, N2‐BET, NH3‐TPD, NO‐TPD, Py‐IR, H2‐TPR, Raman spectra and XPS, respectively. Results showed the optimal catalyst with the Pr/Ce molar ratio of 0.10 exhibited more than 90% NO conversion in a wide temperature range of 290–425°C under GHSV of 5000 h?1. The number of Lewis acid sites and the chemisorbed oxygen concentration of the catalysts would increase with the Pr incorporation, which was favorable for the excellent catalytic performance. In addition, the Pr incorporation inhibited growth of the Al2O3 crystal particles and led to the lattice expansion of CeO2, which increased catalytic activity. The results implied that the higher chemisorbed oxygen concentrations and the more Lewis acid sites were conductive to obtain the excellent SCR activity.  相似文献   

12.
包卓然  崔艳喜  孙鹏  孙琪  石雷 《物理化学学报》2013,29(11):2444-2450
对丙三醇和苯胺在Co或Ni促进的Cu/SiO2-Al2O3催化剂上气相合成3-甲基吲哚进行了研究.采用N2吸附、氢气程序升温还原(H2-TPR)、电感耦合等离子体(ICP)发射光谱、X射线衍射(XRD)、透射电子显微镜(TEM)、氨程序升温脱附(NH3-TPD)及热重(TG)分析等技术对催化剂进行了表征.结果表明,向Cu/SiO2-Al2O3催化剂加入钴或镍助剂改善了催化剂的催化性能,钴比镍更加有效.在催化剂Cu-Co/SiO2-Al2O3和Cu-Ni/SiO2-Al2O3上,反应第3 h,3-甲基吲哚收率分别达到47%和45%,而且催化剂经过6次再生收率仍能达到44%和42%.各种表征表明,向Cu/SiO2-Al2O3催化剂加入钴或镍助剂能增强铜和载体之间的相互作用,其结果不仅促进了铜粒子在载体表面的分散度,而且有效减少了反应过程中铜组分的流失.另外,加入钴或镍助剂还能减少催化剂的中强酸中心数,从而提高3-甲基吲哚的选择性,并且抑制积炭的形成.此外,钴助剂还能增加催化剂的弱酸中心数,促进3-甲基吲哚的生成.提出了金属铜与弱酸中心共同促进3-甲基吲哚合成的催化反应机理.  相似文献   

13.
The effect of temperature on the adsorption/desorption of ammonia from the air mixture on the surface of γ-Al2O3, TiO2 (anatase) and alumina-supported vanadia catalyst samples has been investigated using temperature-programmed desorption (TPD). When the vanadia loading was increased, the fraction of the acid sites providing the NH3 adsorption in the high-temperature state decreased. At the same time, the fraction of the medium temperature state significantly increased.  相似文献   

14.
The formation and evolution with temperature of the crystalline phases in sol-gel ZrO2 was analyzed by using X-ray powder diffraction, refinement of the crystalline structures, ESR, and UV-Vis spectroscopy. The precursor phase of crystalline zirconia was amorphous Zr(OH)4 with the same local order as the tetragonal crystalline phase. This amorphous phase dehydroxylated with temperature, generating nanocrystalline tetragonal zirconia, and producing point defects that stabilized the tetragonal structure, generated a paramagetic ESR signal with g values like the free electron, and had a light absorption band at 310 nm. When the sample was annealed at higher temperatures, it continued dehydroxilating, and the point defects disappeared, causing the transformation of the nanocrystalline tetragonal phase into nanocrystalline monoclinic zirconia. The two crystalline nanophases coexisted since the beginning of crystallization.  相似文献   

15.
Cobalt was incorporated into the zirconia support by different methods. The reducibility and activity of the catalysts was directly related to the preparation methods. Impregnated Co/ZrO2 catalyst showed the highest reduction degree and the highest CO hydrogenation activity.  相似文献   

16.
Tao Lin 《Acta Physico》2008,24(7):1127-1131
Monolith catalysts were prepared using TiO2 and ZrO2-TiO2 as supports with MnO2 as active component and Fe2O3 as promoter. The catalytic activities at low temperature and stability at high temperature for selective catalytic reduction of NOx with NH3 (NH3-SCR) in the presence of excessive O2 were studied after the catalysts calcined at different temperatures. The catalysts were characterized by X-ray diffraction (XRD), specific surface area measurements (BET), oxygen storage capacity (OSC), and temperature programmed reduction (H2-TPR). The results indicated that the catalyst supported on ZrO2-TiO2 had excellent stability at high temperature, and possessed high specific surface area and oxygen storage capacity, and had strong redox property. The results of the catalytic activities indicated that the monolith manganese-based catalyst using ZrO2-TiO2 as support had evidently improved the activity of NH3-SCR reduction reaction at low temperature, and it showed great potential for practical application.  相似文献   

17.
The effect of manganese on the dispersion, reduction behavior and active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature‐programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO‐MnOx/γ‐Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/γ‐Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO‐MnKx/γ‐Al2O3 catalyst different from the individual supported copper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/γ‐Al2O3 catalyst there are two reducible copper oxide species; α and β peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO‐MnOx/γ‐Al2O3 catalyst, four reduction peaks are observed, α peak is attributed to the dispersed copper oxide species; β peak is ascribed to the bulk CuO; γ peak is attributed to the reduction of high dispersed CuO interacting with manganese; δ peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu‐Mn/γ‐Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between Cu? O? Mn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation.  相似文献   

18.
The characterization of fluoride-modified Mo/Al2O3 catalysts was performed in order to investigate on the effect that low levels of fluoridation of the alumina support (0-2.0 wt.%) cause on the support itself and on the supported Mo oxide and sulfide phases. Fluoride-modified Al2O3 supports and Mo/Al2O3 catalysts where characterized by nitrogen physisorption, scanning electronic microscopy (SEM-EDX), isoelectric point (IEP), Fourier transform infrared spectroscopy (FT-IR), infrared spectroscopy of adsorbed CO2 (IR-CO2), and temperature programmed reduction (TPR). The dispersion of the sulfided catalysts was estimated by dynamic NO chemisorption. The results indicate that the different hydroxyl types present on the alumina surface react to a different extent with fluoride and that it is the most basic hydroxyl groups that are titrated first.The consumption of the alumina OH by F, inhibits, during the deposition of Mo, the formation of tetrahedral molybdenum oxide species in strong interaction with the support, leading to an increased number of polymeric octahedral Mo surface species. The NO adsorption results put in evidence a drop in the dispersion of the MoS2 phase present in the sulfided samples.  相似文献   

19.
以高比表面积ZrO2为载体,采用浸渍法制备了负载型Pt催化剂,应用于常压下气相巴豆醛加氢反应,考察了Pt负载量和H2还原温度等对巴豆醛选择性加氢性能的影响.实验结果表明,Pt负载量(质量分数)为3%的3Pt/ZrO2催化剂经500℃还原后,具有较高的巴豆醛选择性加氢性能:巴豆醛转化率为27%,巴豆醇的选择性为55%.X射线粉末衍射(XRD)分析,CO化学吸附,NH3程序升温脱附(NH3-TPD)表征结果表明Pt/ZrO2催化剂上Lewis强酸中心和适宜的Pt颗粒(约为8nm)有利于巴豆醛选择性加氢生成巴豆醇.  相似文献   

20.
A series of MoO3/ZrO2 catalysts were prepared by impregnation method, and characterized by X-ray diffraction (XRD), specific surface area (BET) and temperature-programmed desorption of NH3 (NH3-TPD). The polydimethylsiloxane (PDMS) was prepared by ring-opening polymerization from D4 and MM with MoO3/ZrO2 catalysts. The effects of MoO3/ZrO2 catalysts preparation conditions on PDMS molecular weight and reaction conversion rate were discussed. Moreover, the effects of reaction conditions on the ring-opening polymerization were also studied. During the preparation of PDMS, the molecular weight of the product can be controlled by adjusting the mass ratio of D4:MM. The MoO3/ZrO2 catalyst was compared with other catalysts during the ring-opening process, and the repeated times of MoO3/ZrO2 catalysts were also studied. The results showed that MoO3/ZrO2 catalyst had more excellent catalytic performance, for ring-opening process, and when the repeated times was more than 5, the catalytic activity decreased significantly. In addition, the kinetics of D4 ring-opening polymerization with the MoO3/ZrO2 catalyst was investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号