首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One of the keys to understanding the emergent behavior of complex materials and nanoparticles is understanding their phases. Understanding the phases of nanomaterials involves new concepts not present in bulk materials; for example, the phases of nanoparticles are quantum mechanical even when no hydrogen or helium is present. To understand these phases better, molecular dynamics (MD) simulations on size-selected particles employing a realistic analytic many-body potential based on quantum mechanical nanoparticle calculations have been performed to study the temperature-dependent properties and melting transitions of free Al n clusters and nanoparticles with n = 10-300 from 200 to 1700 K. By analyzing properties of the particles such as specific heat capacity (c), radius of gyration, volume, coefficient of thermal expansion (beta), and isothermal compressibility (kappa), we developed operational definitions of the solid, slush, and liquid states of metal clusters and nanoparticles. Applying the definitions, which are based on the temperature dependences of c, beta, and ln kappa, we determined the temperature domains of the solid, slush, and liquid states of the Al n particles. The results show that Al n clusters ( n or= 19, diameter of more than 1 nm) do have a melting transition and are in the liquid state above 900-1000 K. However, all aluminum nanoparticles have a wide temperature interval corresponding to the slush state in which the solid and liquid states coexist in equilibrium, unlike a bulk material where coexistence occurs only at a single temperature (for a given pressure). The commonly accepted operational marker of the melting temperature, namely, the peak position of c, is not unambiguous and not appropriate for characterizing the melting transition for aluminum particles with the exception of a few particle sizes that have a single sharp peak (as a function of temperature) in each of the three properties, c, beta, and ln kappa.  相似文献   

2.
Relatively large gold nanoparticles (mean diameter of major axis 38.2 nm, mean aspect ratio 1.29) in aqueous solution were found to undergo shape transformations from ellipsoids to spheres at ca. 940 degrees C, which is much lower than their melting point, ca. 1060 degrees C. The shape transformation of gold nanoparticles induced by a single pulse of a Nd:YAG laser (lambda = 355 nm, pulse width = 30 ps) was directly observed by a transmission electron microscope (TEM). Analysis of the experimental data showed that the threshold energy for photothermally induced shape transformation was on the order of 40 fJ for a particle, which is smaller than the energy, 67 fJ, required for its complete melting. Estimations based on the heat balance and surface melting model revealed that the temperature which particles reach after a single laser pulse was about 940 degrees C, with the thickness of the liquid layer on the surface of the solid core being 1.4 nm. We also examined thermally induced shape transformation of gold nanoparticles on Si substrates; above 950 degrees C they changed their shapes to spheres, which supported our estimation. Due to the surface melting of particles, their shape transformation occurs at a temperature much lower than their melting point.  相似文献   

3.
Water nanoparticles play an important role in atmospheric processes, yet their equilibrium and nonequilibrium liquid-ice phase transitions and the structures they form on freezing are not yet fully elucidated. Here we use molecular dynamics simulations with the mW water model to investigate the nonequilibrium freezing and equilibrium melting of water nanoparticles with radii R between 1 and 4.7 nm and the structure of the ice formed by crystallization at temperatures between 150 and 200 K. The ice crystallized in the particles is a hybrid form of ice I with stacked layers of the cubic and hexagonal ice polymorphs in a ratio approximately 2:1. The ratio of cubic ice to hexagonal ice is insensitive to the radius of the water particle and is comparable to that found in simulations of bulk water around the same temperature. Heating frozen particles that contain multiple crystallites leads to Ostwald ripening and annealing of the ice structures, accompanied by an increase in the amount of ice at the expense of the liquid water, before the particles finally melt from the hybrid ice I to liquid, without a transition to hexagonal ice. The melting temperatures T(m) of the nanoparticles are not affected by the ratio of cubic to hexagonal layers in the crystal. T(m) of the ice particles decreases from 255 to 170 K with the particle size and is well described by the Gibbs-Thomson equation, T(m)(R) = T(m)(bulk) - K(GT)/(R - d), with constant K(GT) = 82 ± 5 K·nm and a premelted liquid of width d = 0.26 ± 0.05 nm, about one monolayer. The freezing temperatures also decrease with the particles' radii. These results are important for understanding the composition, freezing, and melting properties of ice and liquid water particles under atmospheric conditions.  相似文献   

4.
We present results of a combined two-photon photoemission and scanning electron microscopy investigation to determine the electromagnetic enhancement factors of silver-coated spherical nanoparticles deposited on an atomically flat mica substrate. Femtosecond laser excitation of the nanoparticles produces intense photoemission, attributed to near-resonant excitation of localized surface plasmons. Enhancement factors are determined by comparing the respective two-photon photoemission yields measured for single nanoparticles and the surrounding flat surface. For p-polarized, 400 nm (~3.1 eV) femtosecond radiation, a distribution of enhancement factors is found with a large percentage (67%) of the nanoparticles falling within a median range. A correlated scanning electron microscopy analysis demonstrated that the nanoparticles typifying the median of the distribution are characterized by spherical shapes and relatively smooth silver film morphologies. In contrast, the largest enhancement factors were produced by a small percentage (7%) of particles that displayed silver coating defects that altered the overall particle structure. Comparisons are made between the experimentally measured enhancement factors and previously reported calculations of the localized near-field enhancement for isolated silver nanoparticles.  相似文献   

5.
Quasi-isothermal temperature modulated DSC and DMA measurements (TMDSC and TMDMA, respectively) were performed to determine heat capacity and shear modulus as a function of time during crystallization. Non-reversible and reversible phenomena in the crystallization region of polymers can be observed. The combination of TMDSC and TMDMA yields new information about local processes at the surface of polymer crystals, like reversible melting. Reversible melting can be observed in complex heat capacity and in the amplitude of shear modulus in response to temperature perturbation. The fraction of material involved in reversible melting, which is established during main crystallization, keeps constant during secondary crystallization for PCL PET and PEEK. This shows that also after long crystallization times the surfaces of the individual polymer crystallites are in equilibrium with the surrounding melt. Simply speaking, polymer crystals are ‘living crystals’. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Heat capacity is one of the most characteristic and important properties when the peculiarities of magnetic nanosystems are studied. In these systems the magnetic ordering becomes obvious due to the thermal effects such as heat capacity anomalies. It was considered earlier that heat capacity change under magnetic fields applied is slight and it cannot be taken into account in thermodynamic calculations. However the experimental heat capacity data for ferrofluids under magnetic fields applied show that field and temperature heat capacity dependences have a complicated behavior and in magnetic fields an essential heat capacity change takes place. On the other hand in the literature the contradictory data about heat capacity of nanoparticles appear. According to some papers nanoparticles heat capacity can exceed heat capacity of a bulk material a few times.  相似文献   

7.
The response of gold nanorods to both thermal and ultrafast laser-induced heating has been examined. The thermal heating experiments show structural changes that occur on timescales ranging from hours to days. At the highest temperature examined (250 degrees C) the nanorods are transformed into spheres within an hour. On the other hand, no structural changes are observed in the laser-induced heating experiments up to temperatures of 700 +/- 50 degrees C. This is attributed to thermal diffusion in the laser experiments. Measurements of the period of the extensional mode of the nanorods using time-resolved spectroscopy show a significant softening at high pump laser powers. However, the decrease in the period is less than expected from bulk Young's modulus vs. temperature data.  相似文献   

8.
The effect of laser pulse irradiation on silver metal nanoparticles in ethylene glycol and glycerol is studied and compared with the parallel processes in aqueous solutions. The influence of 355 nm laser pulse irradiation at the surface plasmon frequency and on the size of the silver nanoparticles is examined by UV-Vis absorption spectroscopy and by transmission electron microscopy. It appears that viscosity of the medium plays a crucial role for the stabilization of the melted particles in the absence of the stabilizer. In ethylene glycol containing PVP, fragmentation of particles was observed. In neat glycerol, similar excitation led to morphological changes as the nanoparticles fused to produce particles of larger size. The changes in reduction of shape and size are considered to occur through melting and vaporization of the silver nanoparticles.  相似文献   

9.
A theoretical model is proposed for describing the melting of a metal nanoparticle embedded into a solid matrix. The model is based on a thermodynamic approach that takes into account matrix elasticity. The melting process is described for gold nanoparticles embedded in a solid matrix whose elastic modulus is varied in a wide range. Both spherical and ellipsoidal particles are considered. It is shown that particle melting temperature can be both higher and lower than the melting point of a bulk sample depending on the interaction intensity of the solid and liquid particle surfaces with the matrix. An increase in the shear modulus of the matrix causes a rise in the nanoparticle melting temperature, with the effect of the matrix elasticity becoming noticeable at some critical shear modulus. The conditions are revealed at which only a surface layer of a nanoparticle, the thickness of which depends on the particle radius and temperature, is melted.  相似文献   

10.
We report on the size dependence of the melting temperature of silica-encapsulated gold nanoparticles. The melting point was determined using differential thermal analysis (DTA) coupled to thermal gravimetric analysis (TGA) techniques. The small gold particles, with sizes ranging from 1.5 to 20 nm, were synthesized using radiolytic and chemical reduction procedures and then coated with porous silica shells to isolate the particles from one another. The resulting silica-encapsulated gold particles show clear melting endotherms in the DTA scan with no accompanying weight loss of the material in the TGA examination. The silica shell acts as a nanocrucible for the melting gold with little effect on the melting temperature itself, even though the analytical procedure destroys the particles once they melt. Phenomenological thermodynamic predictions of the size dependence of the melting point of gold agree with the experimental observation. Implications of these observations to the self-diffusion coefficient of gold in the nanoparticles are discussed, especially as they relate to the spontaneous alloying of core-shell bimetallic particles.  相似文献   

11.
A combination of ultrafast time-resolved velocity map imaging (TR-VMI) methods and complete active space self-consistent field (CASSCF) ab initio calculations are implemented to investigate the electronic excited-state dynamics in aniline (aminobenzene), with a perspective for modeling (1)πσ* mediated dynamics along the amino moiety in the purine derived DNA bases. This synergy between experiment and theory has enabled a comprehensive picture of the photochemical pathways/conical intersections (CIs), which govern the dynamics in aniline, to be established over a wide range of excitation wavelengths. TR-VMI studies following excitation to the lowest-lying (1)ππ* state (1(1)ππ*) with a broadband femtosecond laser pulse, centered at wavelengths longer than 250 nm (4.97 eV), do not generate any measurable signature for (1)πσ* driven N-H bond fission on the amino group. Between wavelengths of 250 and >240 nm (<5.17 eV), coupling from 1(1)ππ* onto the (1)πσ* state at a 1(1)ππ*/(1)πσ* CI facilitates ultrafast nonadiabatic N-H bond fission through a (1)πσ*/S(0) CI in <1 ps, a notion supported by CASSCF results. For excitation to the higher lying 2(1)ππ* state, calculations reveal a near barrierless pathway for CI coupling between the 2(1)ππ* and 1(1)ππ* states, enabling the excited-state population to evolve through a rapid sequential 2(1)ππ* → 1(1)ππ* → (1)πσ* → N-H fission mechanism, which we observe to take place in 155 ± 30 fs at 240 nm. We also postulate that an analogous cascade of CI couplings facilitates N-H bond scission along the (1)πσ* state in 170 ± 20 fs, following 200 nm (6.21 eV) excitation to the 3(1)ππ* surface. Particularly illuminating is the fact that a number of the CASSCF calculated CI geometries in aniline bear an exceptional resemblance with previously calculated CIs and potential energy profiles along the amino moiety in guanine, strongly suggesting that the results here may act as an excellent grounding for better understanding (1)πσ* driven dynamics in this ubiquitous genetic building block.  相似文献   

12.
For semicrystalline polymers there is an ongoing debate at what temperature the immobilized or rigid amorphous fraction (RAF) devitrifies (relaxes). The question if the polymer crystals are melting first and simultaneously the RAF devitrifies or the RAF devitrifies first and later on the crystals melt cannot be answered easily on the example of semicrystalline polymers. This is because the crystals, which are the reason for the immobilization of the polymer, often disappear (melt) in the same temperature range as the RAF. For polymer nanocomposites the situation is simpler. Silica nanoparticles do not melt or undergo other phase transitions altering the polymer-nanoparticle interaction in the temperature range where the polymer is thermally stable (does not degrade). The existence of an immobilized fraction in PMMA SiO2 nanocomposites was shown on the basis of heat capacity measurements at the glass transition of the polymer. The results were verified by enthalpy relaxation experiments below the glass transition. The immobilized layer is about 2 nm thick at low filler content if agglomeration is not dominant. The thickness of the layer is similar to that found in semicrystalline polymers and independent from the shape of the nanoparticles. Nanocomposites therefore offer a unique opportunity to study the devitrification of the immobilized fraction (RAF) without interference of melting of crystals as in semicrystalline polymers. It was found that the interaction between the SiO2 nanoparticles and the PMMA is so strong that no devitrification occurs before degradation of the polymer. No gradual increase of heat capacity or a broadening of the glass transition was found. The cooperatively rearranging regions (CRR) are either immobilized or mobile. No intermediate states are found. The results obtained for the polymer nanocomposites support the view that the reason for the restricted mobility must disappear before the RAF can devitrify. For semicrystalline polymers this means that rigid crystals must melt before the RAF can relax.  相似文献   

13.
14.
Poly( N-isopropylacrylamide) microgels were coassembled with Au nanoparticles into disordered glassy phases and irradiated with a tightly focused laser (lambda = 532 nm) to study crystallization dynamics following a localized photothermal annealing process. The degree of crystallization produced by the annealing process is dependent upon heat flux into the sample at the site of irradiation, the length of irradiation time, and the temperature of the surrounding bulk assembly that functions as a quenching bath. Control over these sample conditions provides a method by which to probe the dynamics of crystallization over a set of microgel concentrations. The mobility, and thus the crystallization, of particles is shown to be frustrated as the microgel concentration is increased. This is in contrast with equilibrium experiments that have shown an increase in particle mobility with microgel concentration that is manifest as an increase in the freezing transition of the bulk assembly with increasing packing density.  相似文献   

15.
Molecular dynamics simulations for nanometer scale polyethylene (PE) particles generated with up to 12000 atoms are presented to gain insight into some thermodynamic properties of ultra fine polymer powders. By computing molecular volume and total energy as a function of temperature, we obtained melting point, glass transition temperature, and heat capacity. The results of our simulations predict an interesting reduction of the melting point in comparison with the PE bulk system.  相似文献   

16.
Thermal (blackbody-like) radiation that originated from laser-heated tungsten nanoparticles was measured using optical emission spectroscopy. The nanoparticles were generated via ArF excimer laser-assisted photolytic decomposition of WF6/H2/Ar gas mixtures, and the laser heating was applied parallel to the deposition. The temperature of the nanoparticles was determined, and its dependence on time, with respect to the 15-ns laser pulse (full width at half-maximum, fwhm) and laser fluence (phi), has been presented. At phi > 90 mJ/cm2, the particles reached the melting point (shortly after the laser pulse). Dominant cooling mechanisms, such as evaporation (above approximately 3000 K) and a combination of heat transfer by the ambient gas and radiative cooling (below approximately 3000 K), were observed for the nanoparticles, which were approximately 10 nm in diameter. The degree of inelasticity for the (predominantly) argon-gas collisions and the total emissivity of the particles (in the 2500-3000 K temperature region) could also be derived. The measured cooling rate and temperature data indicate that, depending on experimental parameters, evaporation and surface reactions can have a definite effect on the growth of particles.  相似文献   

17.
High-level ab initio electronic structure calculations are used to interpret the fragmentation dynamics of CHBr(2)COCF(3), following excitation with an intense ultrafast laser pulse. The potential energy surfaces of the ground and excited cationic states along the dissociative C-CF(3) bond have been calculated using multireference second order perturbation theory methods. The calculations confirm the existence of a charge transfer resonance during the evolution of a dissociative wave packet on the ground state potential energy surface of the molecular cation and yield a detailed picture of the dissociation dynamics observed in earlier work. Comparisons of the ionic spectrum for two similar molecules support a general picture in which molecules are influenced by dynamic resonances in the cation during dissociation.  相似文献   

18.
The diffusivity and structural relaxation characteristics of oligomer-grafted nanoparticles have been investigated with simulations of a previously proposed coarse-grained model at atmospheric pressure. Solvent-free, polymer-grafted nanoparticles as well as grafted nanoparticles in a melt were compared to a reference system of bare (ungrafted) particles in a melt. Whereas longer chains lead to a larger hydrodynamic radius and lower relative diffusivity for grafted particles in a melt, bulk solvent-free nanoparticles with longer chains have higher relative diffusivities than their short chain counterparts. Solvent-free nanoparticles with short chains undergo a glass transition as indicated by a vanishing diffusivity, diverging structural relaxation time and the formation of body-centered-cubic-like order. Nanoparticles with longer chains exhibit a more gradual increase in the structural relaxation time with decreasing temperature and concomitantly increasing particle volume fraction. The diffusivity of the long chain nanoparticles exhibits a minimum at an intermediate temperature and volume fraction where the polymer brushes of neighboring particles overlap, but must stretch to fill the interparticle space.  相似文献   

19.
The response of single crystal, cubic silver particles to ultrafast laser-induced heating has been examined experimentally and theoretically. The transient absorption traces display clear modulations due to coherently excited vibrational modes. Nanocube samples with edge lengths smaller than 50 nm show a single modulation, whereas samples larger than 50 nm show two vibrational modes. The results are compared to finite element calculations, where the cubes are modeled as having cubic crystal symmetry with the principal axes parallel to the sides of the particle. The action of the laser pulse is treated in two ways, first, as creating a uniform initial strain. In this case the predominant mode excited is the breathing mode. The period of this mode is in reasonable agreement with the vibrational periods measured for the smaller cubes and with the higher frequency modulation observed for the larger cubes. A nonuniform initial strain is also considered, which could arise from nonuniform heating for particles larger than the optical skin depth of the metal. In this case the predominant mode excited is a nontotally symmetric mode. The calculated periods from this analysis are in reasonable agreement with the lower frequency modulations observed for the larger samples. The results from this study show that, to within the accuracy of these measurements, the elastic constants of cubic silver nanoparticles are the same as bulk silver.  相似文献   

20.
An investigation of the excited-state dynamics of SO2(H2O)n (n = 1-5) clusters following excitation by ultrafast laser pulses to 4.7 eV (coupled 1A2 and 1B1 states) and 9.3 eV (F band) is presented. The findings for the coupled 1A2 and 1B1 states are in good agreement with published computational work and indicate the division of the initial excited-state population into the double well produced by the coupled states. A photoinduced ion-pair formation process is proposed as a likely source of the observed dynamic behavior following the 9.3 eV excitation. Energetics calculations are also presented that support the ion-pair mechanism. A lack of cluster size dependence in the measured time constants indicate surface solvation of SO2 rather than a cluster structure with the SO2 molecule fully encompassed by water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号