首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we elucidate the vibrational response of cylindrical nanorods to ultrafast laser-induced heating. A theoretical analysis of the expected behavior is first presented. This analysis predicts that both extensional and breathing vibrational modes of the rods should be excited by laser-induced heating. Analytical formulas are derived assuming that the heating/expansion process is instantaneous, and that the lengths of the rods are much greater than their radii. These results show that the breathing mode dominates the mechanical deformation of the rod. However, because the frequency of the extensional mode is much lower than that of the breathing mode, the extensional mode will dominate the response for a real experiment (a finite-time heating/expansion process). The results of this model are compared to data from transient absorption experiments performed on gold nanorods with average lengths between 30 and 110 nm. The transient absorption traces show pronounced modulations with periods between 40 and 120 ps, which are only observed when the probe laser is tuned to the longitudinal plasmon band. The measured periods are in good agreement with the expected values for the extensional modes of the rods. For rods wider than 20 nm, the breathing mode can also be observed and, again, the measured periods are in good agreement with the theoretical calculations. The breathing mode is not observed for thinner rods (<20 nm width) because, in this case, the period is comparable to the time scale for lattice heating.  相似文献   

2.
A signal due to coherently excited vibrational motion has been observed in polydisperse silver nanoparticle samples. The particles were synthesized via a wet chemistry seed mediated method, which yields different particle shapes, including spheres, rods, and irregular triangular-shaped particles. The measured vibrational periods were compared to the results from continuum mechanics calculations. This analysis shows that the observed signal arises from the triangular-shaped particles, rather than the rods or spheres. The period of vibration increases as the dimensions of the triangular-shaped particles increase; specifically, we find that the period is given by 2h/c(l), where h is the bisector of the triangle and c(l) is the longitudinal speed of sound in silver.  相似文献   

3.
Theoretical density functional theory (DFT) calculation, ab initio and experimental vibrational characterization of acridone were performed. The computed vibrational modes agree well with the experimental values of the related crystal structure. Surface enhanced Raman scattering (SERS) of acridone in silver colloids with different surface potential values was studied. FT-SERS spectrum of acridone revealed different adsorption behavior of the title compound on the silver particles.  相似文献   

4.
Ultrafast laser studies of the photothermal properties of gold nanocages   总被引:2,自引:0,他引:2  
Au nanocages were synthesized via a galvanic replacement reaction. The extinction peak of these hollow structured particles is shifted into the near-IR compared with the Ag nanocube templates. Energy transfer from the Au nanocages into the surrounding environment (water) as well as the coherently excited vibrational modes of the nanocages were studied by femtosecond pump-probe spectroscopy. The time scale for energy relaxation was found to increase with the size of the particles, with the relaxation time being independent of the laser intensity. The time scales for relaxation are comparable to those for solid spherical gold particles and are consistent with energy relaxation being controlled by heat dissipation in the solvent. The period of the coherently excited vibrational mode is proportional to the dimensions of the nanocages. Intensity-dependent measurements show that in solution the nanocages maintain their integrity up to lattice temperatures of 1100 +/- 100 K.  相似文献   

5.
Uniform cubic particles of neighborite (NaMgF3) were prepared by mixing solutions of magnesium chloride and sodium fluoride, followed by aging for extended periods of time (up to 3 h). Such particles could be obtained directly either by using sodium fluoride in sufficient excess, or by first producing spherical particles of magnesium fluoride and converting them into neighborite cubes by admixing sodium fluoride. It was shown that both MgF2 and NaMgF3 particles so prepared are polycrystalline and that in both procedures to form neighborite a two stage reaction takes place. In the first stage nanosize subunits of MgF2 are formed, which are subsequently converted in the presence of excess sodium fluoride to neighborite crystallites. The latter are then reorganized into larger subunits that constitute colloidal cubes.  相似文献   

6.
We studied the vibrational energy relaxation mechanisms of the amide I and amide II modes of N-methylacetamide (NMA) monomers dissolved in bromoform using polarization-resolved femtosecond two-color vibrational spectroscopy. The results show that the excited amide I vibration transfers its excitation energy to the amide II vibration with a time constant of 8.3 ± 1 ps. In addition to this energy exchange process, we observe that the excited amide I and amide II vibrations both relax to a final thermal state. For the amide I mode this latter process dominates the vibrational relaxation of this mode. We find that the vibrational relaxation of the amide I mode depends on frequency which can be well explained from the presence of two subbands with different vibrational lifetimes (~1.1 ps on the low frequency side and ~2.7 ps on the high frequency side) in the amide I absorption spectrum.  相似文献   

7.
Normal vibrational modes for a three-dimensional defect-free crystal of the high explosive pentaerythritol tetranitrate were obtained in the framework of classical mechanics using a previously published unreactive potential-energy surface [J. Phys. Chem. B 112, 734 (2008)]. Using these results the vibrational density of states was obtained for the entire vibrational frequency range. Relaxation of selectively excited terahertz-active modes was studied using isochoric-isoergic (NVE) molecular dynamics simulations for energy and density conditions corresponding to room temperature and atmospheric pressure. Dependence of the relaxation time on the initial modal excitation was considered for five excitation energies between 10 and 500 kT and shown to be relatively weak. The terahertz absorption spectrum was constructed directly using linewidths obtained from the relaxation times of the excited modes for the case of 10 kT excitation. The spectrum shows reasonably good agreement with experimental results. Dynamics of redistribution of the excited mode energy among the other normal modes was also studied. The results indicate that, for the four terahertz-active initially excited modes considered, there is a small subset of zero wave vector (k = 0) modes that preferentially absorb the energy on a few-picosecond time scale. The majority of the excitation energy, however, is transferred nonspecifically to the bath modes of the system.  相似文献   

8.
Face-centered-cubic (FCC) silver nanoclusters (NCs) adopting either cubic or half-cubic growth modes have been recently reported, but the origin of these atomic assembly patterns and how they are achieved, which would inform our understanding of larger FCC silver nanomaterials, are both unknown. In this study, the cubic and half-cubic growth modes have been unified based on common structural characteristics, and differentiated depending on the starting blocks (cubic vs. half cubic). In both categories, the silver atoms adopt octahedral Ag6, linear AgS2 (in projection drawing), or tetrahedral AgS3P binding modes, and the sulfur atoms adopt T-shaped SAg3 and orthogonal SAg4 modes. An additional T-shaped AgS3 mode is oriented on the surface edge in cubic NCs to complete the cubic framework. Density functional theory calculations indicated that the high structural regularity originates from the strong diffusing capacity of the Ag(5d) and S(3p) orbitals, and the angular momentum distribution of the formed superatomic orbitals. The equatorial orientation of μ4-S or μ4-Ag determines whether growth stops or continues. In particular, a density-of-states analysis indicated that the octahedral silver atoms are chemically more reactive than the silver atoms in the AgS3P motif, regardless of whether the parent NC functions as an electron donor or acceptor.  相似文献   

9.
The ordering of silver nanocrystals is tuned from amorphous aggregates to highly well-ordered, face-centered cubic supra-crystals, using various substrates and controlling their temperature to obtain this. Low-frequency Raman scattering, for the first time, demonstrates vibrational coherence in fcc supra-crystals of nanocrystals. This is shown by a narrowing of the peak corresponding to the quadrupolar modes of the nanocrystals. However, this is obtained when the supra-crystals are smaller than the excitation wavelength. When the supra-crystals are larger, the narrowing cannot be observed. Furthermore, for any size of the supra-crystals, a shift to low frequency of the Raman peak due to the Lorentz field effect is seen.  相似文献   

10.
We report the synthesis of lead piperidine and lead tetrahydroquinoline dithiocarbamate (DTC) complexes and their use as single source precursors for the preparation of anisotropic PbS nanoparticles. The complexes were thermolysed in coordinating solvents such hexadecylamime (HDA), tri-n-octylphosphine oxide (TOPO), oleylamine (OA) and decylamine (DA) at various reaction temperatures. The variation of the reaction conditions and precursors produced PbS particles with shapes ranging from spheres to cubes and rods. The size of the particles is generally larger than those synthesized by conventional precursor routes. The electron microscopy and X-ray diffraction data confirm the particles to be very crystalline with the dominant cubic rock salt phase present in all samples.  相似文献   

11.
We show that individual vibrational modes in single-molecule junctions with asymmetric molecule-lead coupling can be selectively excited by applying an external bias voltage. Thereby, a non-statistical distribution of vibrational energy can be generated, that is, a mode with a higher frequency can be stronger excited than a mode with a lower frequency. This is of particular interest in the context of mode-selective chemistry, where one aims to break specific (not necessarily the weakest) chemical bond in a molecule. Such mode-selective vibrational excitation is demonstrated for two generic model systems representing asymmetric molecular junctions and/or scanning tunneling microscopy experiments. To this end, we employ two complementary theoretical approaches, a nonequilibrium Green's function approach and a master equation approach. The comparison of both methods reveals good agreement in describing resonant electron transport through a single-molecule contact, where differences between the approaches highlight the role of non-resonant transport processes, in particular co-tunneling and off-resonant electron-hole pair creation processes.  相似文献   

12.
The population lifetimes of the bend fundamental of dilute water in liquid chloroform (8.5 ps) and d-chloroform (28.5 ps) display an interesting solvent isotope effect. As the lowest excited vibrational state of the molecule, the water bend fundamental relaxes directly to the ground state with about 1600 cm-1 of energy released to the other degrees of freedom. The strong solvent isotope effect along with the large energy gap indicates the participation of solvent vibrational modes in this vibrational energy relaxation process. We calculate the vibrational energy relaxation rates of the water bend in chloroform and d-chloroform using the Landau-Teller formula with a new potential model developed and parametrized self-consistently to describe the chloroform-water interaction. The computed values are in reasonable agreement with the experimental results, and the trend for the isotope effect is correct. It is found that energy transfer to the solvent vibrations does indeed play an important role. Nevertheless, no single dominant solvent accepting mode can be identified; the relaxation appears to involve both the bend and the C-Cl stretches, and frequency changes of all of these modes upon deuteration contribute to the observed solvent isotope effect.  相似文献   

13.
Recrystallization kinetics (Ostwald ripening) of silver bromide microcrystals in gelatin gel was studied. The study was made on model mixtures containing small silver bromide particles (about 60 nm) and larger microcrystals of different sizes (100–400 nm) and habits (cubic and octahedral). Variations in the average size of large crystals in the system were controlled by spectral turbidimetry. The growth rate of the large crystals was found to be directly proportional to the total solubility of a substance constituting the dispersed phase, as well as to difference in sizes of large and small particles. The kinetics of large crystal growth was also shown significantly to depend on the average distance between particles of the system. The theoretical model describing mass transfer during the Ostwald ripening in the closed disperse system was proposed, providing that interacting particles are immovable.  相似文献   

14.
Given the limited intermolecular spaces available in dense liquids, the large amplitudes of highly excited, low frequency vibrational modes pose an interesting dilemma for large molecules in solution. We carry out molecular dynamics calculations of the lowest frequency ("warping") mode of perylene dissolved in liquid argon, and demonstrate that vibrational excitation of this mode should cause identifiable changes in local solvation shell structure. But while the same kinds of solvent structural rearrangements can cause the non-equilibrium relaxation dynamics of highly excited diatomic rotors in liquids to differ substantially from equilibrium dynamics, our simulations also indicate that the non-equilibrium vibrational energy relaxation of large-amplitude vibrational overtones in liquids should show no such deviations from linear response. This observation seems to be a generic feature of large-moment-arm vibrational degrees of freedom and is therefore probably not specific to our choice of model system: The lowest frequency (largest amplitude) cases probably dissipate energy too quickly and the higher frequency (more slowly relaxing) cases most likely have solvent displacements too small to generate significant nonlinearities in simple nonpolar solvents. Vibrational kinetic energy relaxation, in particular, seems to be especially and surprisingly linear.  相似文献   

15.
运用因子群分析法对石墨烯的分子振动模式进行了理论分析,得到石墨烯的分子振动模式,计算出各振动模式的光谱特性.对所建立的石墨烯晶体的布拉维单胞模型采用基于密度泛函理论的第一性原理进行分子振动频率与模式的计算,所得的振动模式数目以及各振动频率的光谱特性同因子群分析方法所得结论一致.结合上述计算结果,通过系统比较石墨与石墨烯之间的红外光谱和拉曼光谱的差别,从理论上解释了具有D6h对称的石墨烯的A2u、E1u红外活性特征振动模式没有在红外光谱中出现的原因.  相似文献   

16.
The laser excited fluorescence method has been employed to determine the rate constants for vibrational relaxation of the O3 (010), O3 (100) and O3 (001) levels at 298 K. The fluorescence observations from the O3 (010) level provide direct measurements of the rate for intermode vibrational energy transfer from the coupled ν1 and ν3 modes to the ν2 mode. The slowness of this process indicates the likelihood that the ν1 and/or ν3 modes (rather than the ν2 mode) play a predominant role in the laser enhanced reaction between O32 and NO at 298 K.  相似文献   

17.
The positron-electron correlation-polarization potential model is used to calculate annihilation spectra of carbon disulfide and benzene. We assume that the positron is captured in the vibrationally excited states of the target molecule through vibrational Feshbach resonances. Using the standard normal mode representation, we calculated the resonance energies and widths for each vibrational mode. The resonance widths were calculated with Fermi's Golden Rule approximation, where the time-dependent wave packet approach has been applied. We found that vibrational resonances of infrared-active modes play a dominant role in resonant annihilation; however, infrared-inactive modes also contribute to the annihilation spectrum through polarizability changes along normal mode coordinates.  相似文献   

18.
Terahertz (THz) absorption is a fingerprint property of materials, due to the underlying low-frequency vibration/phonon modes being strongly dependent on the chemical constitutions and microscopic structures. The low excitation energies (0.414-41.4 meV) are related to two intrinsic properties of THz vibrations: the potential energy surfaces (PESs) are shallow, and the vibrationally excited states are usually populated via thermal fluctuations. The shallow PESs make the vibrations usually anharmonic, leading to redshifted vibrational excited state absorption; combined with considerable vibrational excited states population, characteristic THz signals are usually redshifted and congested with varying degrees at different temperatures. Combining existing experimental THz spectra at low temperatures, first principles vibration analysis, and the Morse potential, we developed a semi-empirical model to evaluate the anharmonicity of the low-frequency modes. The model was benchmarked with purine molecular crystal to generate THz spectra at different temperatures, the results were consistent with experiments. The good agreement suggests this model would facilitate the application of THz spectroscopy in molecular crystal characterization.  相似文献   

19.
本文研究了多结构立方体溴碘化银乳剂微晶的壳层制备。在壳层制备过程中,pAg值、TAI和氨能明显影响晶体的生长和再成核过程。对立方体AgBr晶体而言,包壳速度相同时,再成核晶体数随包壳时pAg值的增加或TAI的存在而增加,随着氨的存在而下降。当TAI存在时,晶体习性由立方体转向八面体。在本实验条件下,当制备壳层的包壳速度比达到1:3.3时,乳剂的感光度有明显的增加。核壳银量比对乳剂的感光度也有明显的影响,当核壳银量比由0.83:1上升到4.5:1时,感光度上升了大约80%,而灰雾几乎没有变化。  相似文献   

20.
Dispersed fluorescence spectra of jet-cooled hydrogen-bonded phenols have been observed by excitation of intra- and inter-molecular vibrational levels. The spectra show that vibrational energy redistribution occurs from the excited vibronic level into intermolecular vibrational modes. Energy redistribution within the intermolecular vibrational modes was also found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号