首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review focuses on new insights into the crystal melting transition and the amorphous glass transition of polymers that have been gained through recent advances in thermoanalytical methods. The specific heat capacity can now be studied under two extreme limits, that is, under quasi‐isothermal conditions (limit of zero heating rate) and, at the other end of the scale, under rapid heating conditions (heating rates on the order of thousands of degrees per second), made possible through nanocalorimetry. The reversible melting, and multiple reversible melting, of semicrystalline polymers is explored using quasi‐isothermal temperature modulated differential scanning calorimetry, TMDSC. The excess reversing heat capacity, above the baseline, measured under nearly isothermal conditions is attributed to locally reversible surface melting and crystallization processes that do not require molecular nucleation. Observations of double reversible melting endotherms in isotactic polystyrene suggest existence of two distinct populations of crystals, each showing locally reversible surface melting. The second subject of the review, nanocalorimetry, is utilized to study samples of small mass under conditions of very fast heating and cooling. The glass transition properties of thin amorphous polymer films are observed under adiabatic conditions. The glass transition temperature appears to be independent of film thickness, and is observed even in ultra‐thin films. Recrystallization and reorganization during rapid heating are studied by nanocalorimetry of semicrystalline polymers. The uppermost endotherm seen under normal DSC scanning of poly(ethylene terephthalate) is caused by reorganization, and vanishes under the rapid heating conditions (3000K/s) provided by nanocalorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 629–636, 2005  相似文献   

2.
The heat capacity of poly(trimethylene terephthalate) (PTT) has been analyzed using temperature‐modulated differential scanning calorimetry (TMDSC) and compared with results obtained earlier from adiabatic calorimetry and standard differential scanning calorimetry (DSC). Using quasi‐isothermal TMDSC, the apparent reversing and nonreversing heat capacities were determined from 220 to 540 K, including glass and melting transitions. Truly reversible and time‐dependent irreversible heat effects were separated. The extrapolated vibrational heat capacity of the solid and the total heat capacity of the liquid served as baselines for the analysis. As one approaches the melting region from lower temperature, semicrystalline PTT shows a reversing heat capacity, which is larger than that of the liquid, an observation that is common also for other polymers. This higher heat capacity is interpreted as a reversible surface or bulk melting and crystallization, which does not need to undergo molecular nucleation. Additional time‐dependent, reversing contributions, dominating at temperatures even closer to the melting peak, are linked to reorganization and recrystallization (annealing), while the major melting is fully irreversible (nonreversing contribution). © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 622–631, 2000  相似文献   

3.
The heat capacity or reversing heat flow signal from modulated‐temperature differential scanning calorimetry can be used to measure the onset of phase separation in a poly(vinylmethylether)/water mixture, clearly showing the special type III lower critical solution temperature demixing behavior. Characteristic of this demixing behavior is a three‐phase region, which is detected in the nonreversing heat flow signal. Stepwise quasi‐isothermal measurements through the phase transition show large excess contributions in the (apparent) heat capacity signal, caused by demixing/remixing heat effects on the timescale of the modulation (fast process). These excess contributions and their time‐dependent evolutions (slow process) are useful in understanding the kinetics of phase separation and the morphology (interphase) development. Care has to be taken, however, in interpreting the heat capacity signal derived from the amplitude of the modulated heat flow because nonlinear effects lead to the occurrence of higher harmonics. Therefore, the raw heat flow signal for quasi‐isothermal demixing and remixing measurements is also examined in the time domain. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1824–1836, 2003  相似文献   

4.
The heat capacity of poly(oxyethylene) (POE) with a molar mass of 900,000 Da has been analyzed with differential scanning calorimetry and quasi‐isothermal, temperature‐modulated differential scanning calorimetry. The crystal structure, lattice parameters, and coherently scattering domain sizes have been measured with wide‐angle X‐ray diffraction as a function of temperature. The high‐molar‐mass POE crystals are in a folded‐chain macroconformation and show some locally reversible melting starting already at about 250 K. At 335 K, the thermodynamic heat capacity reaches the level of the melt. The reversible crystallinity depends on the modulation amplitude and has been varied in the melting range from ±0.2 to ±3.0 K. Before melting, there is neither a change in the crystal structure nor a change in the domain size, but the expansivity of the crystals increases at about 320 K. These observations support the interpretation that the monoclinic POE crystals possess a glass transition temperature with a midpoint at about 324 K, whereas the maximum melting temperature is 341 K. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 475–489, 2007  相似文献   

5.
The quasi-isothermal curing of a diepoxide resin with a triamine of polyoxypropylene was studied by alternating differential scanning calorimetry (ADSC), which is a temperature modulated DSC technique. The complex heat capacity measurements allows to analyse the vitrification process at curing temperatures (Tc) below the maximum glass transition of the fully cured epoxy (Tg=85.8°C). Initially, the modulus of the complex heat capacity, |C*p|, increases until a maximum (conversion between 0.42 and 0.56) and then decreases. This step is followed by an abrupt decay of |C*p|, due to the vitrification of the system, which allows the determination of the vitrification time. This value agrees well with that determined by the partial curing method. The phase angle and out-of-phase heat capacity show an asymmetric wide peak during the vitrification process. The change in |C*p| at vitrification decreases with the increase of Tc becoming zero at temperature Tg. This epoxy-triamine system shows a delay of the vitrification process respect to other model epoxy systems probably due to the presence of polyoxypropylene chains in the network.

The decay of |C*p| during vitrification may be normalised between unity and zero by defining a mobility factor. This mobility factor has been used to simulate the reaction rate during the stage where the reaction is controlled by diffusion. The observed reaction rate is simulated by the product of the kinetic reaction rate, determined by the autocatalytic model, and the mobility factor.  相似文献   


6.
The heat capacity of poly[carbonyl(ethylene‐co‐propylene)] with 95 mol % C2H4? CO? (Carilon EP®) was measured with standard differential scanning calorimetry (DSC) and temperature‐modulated DSC (TMDSC). The integral functions of enthalpy, entropy, and free enthalpy were derived. With quasi‐isothermal TMDSC, the apparent reversing heat capacity was determined from 220 to 570 K, including the glass‐ and melting‐transition regions. The vibrational heat capacity of the solid and the heat capacity of the liquid served as baselines for the quantitative analysis. A small amount of apparent reversing latent heat was found in the melting range, just as for other polymers similarly analyzed. With an analysis of the heat‐flow rates in the time domain, information was collected about latent heat contributions due to annealing, melting, and crystallization. The latent heat decreased with time to an even smaller but truly reversible latent heat contribution. The main melting was fully irreversible. All contributions are discussed in the framework of a suggested scheme of six physical contributions to the apparent heat capacity. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1565–1577, 2001  相似文献   

7.
An experimental procedure is proposed for direct measurement of the heat involved in the vaporization of a solid organic compound above its normal melting temperature. This technique consists on the fusion of a solid aromatic hydrocarbon, which is then vaporized by a sudden decrease of the pressure. The direct register of heat flow as function of time by differential scanning calorimetry allows the quantifying of the enthalpy of vaporization of compounds such as phenanthrene, β-naphthol, pyrene, and anthracene. Enthalpies of vaporization were measured in an isothermal mode over a range of temperatures from 10 to 20 K above the melting temperatures of each compound, while enthalpies of fusion were determined from separate experiments performed in a scanning mode. Enthalpies of sublimation are computed from results of fusion and vaporization, and then compared with results from the literature, which currently are obtained by calorimetric or indirect techniques.  相似文献   

8.
The conversion kinetics of an aqueous gelatin solution to gel was studied by temperature modulated and regular DSC under isothermal and continuous cooling conditions. Isothermal runs revealed a decrease in the quasi‐static heat capacity primarily associated with syneresis (phase separation) of the gel. Above 19 °C the isothermal process demonstrated negative effective activation energy that turned positive below 14 °C. Continuous cooling runs detected a reversing heat flow apparently related to the continuing formation and melting of new gel structures. Isoconversional kinetic analysis of continuous cooling measurements yielded negative activation energy for the whole range of conversions and temperatures suggesting that nucleation remained a rate controlling step throughout the whole gelation process.

  相似文献   


9.
Proper filler‐matrix compatibility is a key factor in view of obtaining nanocomposites with well‐dispersed nanofillers displaying enhanced properties. In this respect, polymer‐filler interaction can be improved by a proper combination of matrix and nanofiller polarities. This is explored for matrices ranging from nonpolar high density poly(ethylene) to ethylene‐vinyl acetate (EVA) copolymers with varying vinyl acetate contents, in combination with several types of organoclay or carbon nanotubes. A novel in situ characterization methodology using modulated temperature differential scanning calorimetry is presented to evaluate the matrix‐filler interaction. During quasi‐isothermal crystallization of the matrix, an “excess” contribution is observed in the recorded heat capacity signal because of reversible melting and crystallization. Its magnitude considerably decreases upon addition of nanofiller in case of strong interfacial interaction, whereas the influence is moderate in case of a less interacting matrix‐filler combination. It is suggested that the “excess heat capacity” can be used to quantify the segmental mobility of polymer chains in the vicinity of the nanofiller. Hence it provides valuable information on the strength of interaction, governed by the physical and chemical nature of matrix and filler. Heating experiments subsequent to quasi‐isothermal crystallization point at a certain degree of molecular ordering, responsible for crystal nucleation in EVA copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1291–1302, 2007  相似文献   

10.
For temperature modulated differential scanning calorimetry (TMDSC) a simple model, the low pass filter, is presented which allows to see and calculate the influence of heat transfer into the sample on magnitude and phase shift of the modulated part of the measured heat flow rate and the heat capacity determined from it. A formula is given which enables to correct the measured magnitude of the periodic heat flow rate function and the calculated heat capacity in dependence on the thermal resistance and heat capacity of the sample. The correction becomes very important in regions where the heat capacity changes considerably as in the melting region. The approach is successfully tested with model substances with well-known excess heat capacity in the transition region.  相似文献   

11.
A method is described for measuring the heat and rate of recrystallization following partial melting. The method uses a specific sequence of temperatures with a differential scanning calorimeter, and the melting and recrystallization processes were confirmed by optical observations. The method was applied to poly(butylene terephthalate). The rate of recrystallization was found to be roughly two orders of magnitude faster than isothermal crystallization from the melt. The melting temperatures obtained from recrystallization were used in the Hoffman–Weeks equation to deduce 236°C as the equilibrium melting temperature for poly(butylene terephthalate). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 133–141, 1998  相似文献   

12.
13.
Using fast scanning calorimetry, we determined the crystallinity of thin films of poly(3‐hexylthiophene) crystallized from the melt from measurements of the specific melting enthalpy. A broad range of film thicknesses from 10 µm down to 26 nm was covered. The sample mass was determined from measurements of the specific heat capacity in the molten state allowing a quantitative analysis of the heat flow data. Films with a thickness 400 nm slowly cooled from the melt showed the same crystallinity as bulk samples measured with conventional DSC. Below 350 nm the melting enthalpy decreased strongly. We assign this strongly reduced crystallinity to the restricted crystallization kinetics originating from hindered spherulitic growth under thin film confinement. A higher crystallinity could be partially regained by extended isothermal crystallization at elevated temperatures. Much faster cooling, with rates above about 100 Ks?1 led to a partial suppression of crystallization even for thick films. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1791–1801  相似文献   

14.
A new inorganically template metaphosphate of Ni(II) complex has been synthesized and characterized by different measurements such as DSC, FT-IR, C?CH?CN?CS, X-RD and ICP-AES. Differential scanning calorimeter (DSC) elucidated negative specific heat of the system and has used to evaluate some thermodynamical constants like specific heat, enthalpy and entropy of that system. The specific heat capacity of the system is measured in atmospheric O2 at heating rate of 278 and 283?K?min?1. The specific heat is found both positive and negative at 278?K?min?1.  相似文献   

15.
The crystallization and melting process of poly(l-lactic acid), PLLA, is investigated by temperature modulated differential scanning calorimetry, TMDSC. The sample is cooled from the melt to different temperatures and the crystallization process is followed by subjecting the material to a modulated quasi-isothermal stage. From the average component of the heat flow and the application of the Lauritzen–Hoffman theory two crystallization regimes are identified with a transition temperature around 118 °C. Besides, the oscillating heat flow allows calculating the crystal growth rate via the model proposed by Toda et al., what gives, in addition, an independent determination of the transition temperature from modulated experiments. Further, the kinetics of melting is studied by modulated heating scans at different frequencies. A strong frequency dependence is found both in the real and imaginary part of the complex heat capacity in the transition region. The kinetic response of the material to the temperature modulation is analyzed with the model proposed by Toda et al. Finally, step-wise quasi-isothermal TMDSC was used to investigate the reversible surface crystallization and melting both on cooling and heating and a small excess heat capacity is observed.  相似文献   

16.
A new method is presented to analyze the irreversible melting kinetics of polymer crystals with a temperature modulated differential scanning calorimetry (TMDSC). The method is based on an expression of the apparent heat capacity, , with the true heat capacity, mcp, and the response of the kinetics, . The present paper experimentally examines the irreversible melting of nylon 6 crystals on heating. The real and imaginary parts of the apparent heat capacity showed a strong dependence on frequency and heating rate during the melting process. The dependence and the Cole-Cole plot could be fitted by the frequency response function of Debye's type with a characteristic time depending on heating rate. The characteristic time represents the time required for the melting of small crystallites which form the aggregates of polymer crystals. The heating rate dependence of the characteristic time differentiates the superheating dependence of the melting rate. Taking account of the relatively insensitive nature of crystallization to temperature modulation, it is argued that the ‘reversing’ heat flow extrapolated to ω → 0 is related to the endothermic heat flow of melting and the corresponding ‘non-reversing’ heat flow represents the exothermic heat flow of re-crystallization and re-organization. The extrapolated ‘reversing’ and ‘non-reversing’ heat flow indicates the melting and re-crystallization and/or re-organization of nylon 6 crystals at much lower temperature than the melting peak seen in the total heat flow. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A novel type of adiabatic scanning calorimeter (ASC) based on Peltier elements (PEs) is used to obtain high-resolution enthalpy and heat capacity data on the melting transition of gallium. The accuracy of the specific heat capacity and specific enthalpy is about 2 %, for a sub-mK temperature resolution. The simultaneously determined equilibrium specific heat capacity and specific enthalpy are used to determine the heat of fusion and the purity. In addition, the use of the PE-based ASC as a classical heat step calorimeter and as a constant rate (DSC-type) calorimeter is discussed. A comparison of the ASC results with literature data and DSC data shows the advantages of ASC for the study of phase transitions.  相似文献   

18.
Differential scanning calorimetry (DSC) of semicrystalline polymers   总被引:1,自引:0,他引:1  
Differential scanning calorimetry (DSC) is an effective analytical tool to characterize the physical properties of a polymer. DSC enables determination of melting, crystallization, and mesomorphic transition temperatures, and the corresponding enthalpy and entropy changes, and characterization of glass transition and other effects that show either changes in heat capacity or a latent heat. Calorimetry takes a special place among other methods. In addition to its simplicity and universality, the energy characteristics (heat capacity C P and its integral over temperature T—enthalpy H), measured via calorimetry, have a clear physical meaning even though sometimes interpretation may be difficult. With introduction of differential scanning calorimeters (DSC) in the early 1960s calorimetry became a standard tool in polymer science. The advantage of DSC compared with other calorimetric techniques lies in the broad dynamic range regarding heating and cooling rates, including isothermal and temperature-modulated operation. Today 12 orders of magnitude in scanning rate can be covered by combining different types of DSCs. Rates as low as 1 μK s−1 are possible and at the other extreme heating and cooling at 1 MK s−1 and higher is possible. The broad dynamic range is especially of interest for semicrystalline polymers because they are commonly far from equilibrium and phase transitions are strongly time (rate) dependent. Nevertheless, there are still several unsolved problems regarding calorimetry of polymers. I try to address a few of these, for example determination of baseline heat capacity, which is related to the problem of crystallinity determination by DSC, or the occurrence of multiple melting peaks. Possible solutions by using advanced calorimetric techniques, for example fast scanning and high frequency AC (temperature-modulated) calorimetry are discussed.  相似文献   

19.
Structures of the following compounds have been obtained: N-(2-pyridyl)-N′-2-thiomethoxyphenylthiourea, PyTu2SMe, monoclinic, P21/c, a=11.905(3), b=4.7660(8), c=23,532(6) Å, β=95.993(8)°, V=1327.9(5) Å3 and Z=4; N-2-(3-picolyl)-N′-2-thiomethoxyphenyl-thiourea, 3PicTu2SeMe, monoclinic, C2/c, a=22.870(5), b=7.564(1), c=16.941(4) Å, β=98.300(6)°, V=2899.9(9) Å3 and Z=8; N-2-(4-picolyl)-N′-2-thiomethoxyphenylthiourea, 4PicTu2SMe, monoclinic P21/a, a=9.44(5), b=18.18(7), c=8.376(12) Å, β=91.62(5)°, V=1437(1) Å3 and Z=4; N-2-(5-picolyl)-N′-2-thiomethoxyphenylthiourea, 5PicTu2SMe, monoclinic, C2/c, a=21.807(2), b=7.5940(9), c=17.500(2) Å, β=93.267(6)°, V=2893.3(5) Å3 and Z=8; N-2-(6-picolyl)-N′-2-thiomethoxyphenylthiourea, 6PicTu2SMe, monoclinic, P21/c, a=8.499(4), b=7.819(2), c=22.291(8) Å, β=90.73(3)°, V=1481.2(9) Å3 and Z=4 and N-2-(4,6-lutidyl)-N′-2-thiomethoxyphenyl-thiourea, 4,6LutTu2SMe, monoclinic, P21/c, a=11.621(1), b=9.324(1), c=14.604(1) Å, β=96.378(4)°, V=1572.4(2) Å3 and Z=4. Comparisons with other N-2-pyridyl-N′-arylthioureas having substituents in the 2-position of the aryl ring are included.  相似文献   

20.
The purpose of this study was to determine whether temperature scanning ultrasonic velocity measurements could be used to monitor the complex thermal transitions that occur during the crystallization and melting of triglyceride solid lipid nanoparticles (SLNs). Ultrasonic velocity ( u) measurements were compared with differential scanning calorimetry (DSC) measurements on tripalmitin emulsions that were cooled (from 75 to 5 degrees C) and then heated (from 5 to 75 degrees C) at 0.3 degrees C min (-1). There was an excellent correspondence between the thermal transitions observed in deltaDelta u/delta T versus temperature curves determined by ultrasound and heat flow versus temperature curves determined by DSC. In particular, both techniques were sensitive to the complex melting behavior of the solidified tripalmitin, which was attributed to the dependence of the melting point of the SLNs on particle size. These studies suggest that temperature scanning ultrasonic velocity measurements may prove to be a useful alternative to conventional DSC techniques for monitoring phase transitions in colloidal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号