首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设计合成了一种新型的有机硅氧烷Cz-Si,并将其用于ITO自组装修饰。制备的Cz-Si具有较好的稳定性,可以在空气中对ITO进行自组装修饰,实验操作简单。为考察ITO自组装修饰对有机电致发光器件性能的影响,分别以修饰后的ITO(ITO/SAM)及不修饰的ITO(unmodified)作阳极,制备了一系列有机电致发光器件ITO/SAM(orunmodified)/NPB(40~50nm)/Alq3(60nm)/LiF(1.0nm)/Al。实验结果表明,ITO自组装修饰后器件性能可以得到显著提升,研究认为这与其调控ITO/有机层界面的电子能级、粗糙度以及界面一致性有关。  相似文献   

2.
设计合成了一种新型的有机硅氧烷Cz-Si,并将其用于ITO自组装修饰。制备的Cz-Si具有较好的稳定性,可以在空气中对ITO进行自组装修饰,实验操作简单。为考察ITO自组装修饰对有机电致发光器件性能的影响,分别以修饰后的ITO(ITO/SAM)及不修饰的ITO(unmodified)作阳极,制备了一系列有机电致发光器件ITO/SAM(or unmodified)/NPB(40~50 nm)/Alq3(60 nm)/LiF(1.0 nm)/Al。实验结果表明,ITO自组装修饰后器件性能可以得到显著提升,研究认为这与其调控ITO/有机层界面的电子能级、粗糙度以及界面一致性有关。  相似文献   

3.
Indium tin oxide (ITO) is used as a substrate was covered with 4-[4-(4-methoxy-N-naphthalen-2-ylanilino) phenyl] benzoic acid (MNA) as a self-assembled monolayer (SAM). Poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) were mixed and used as a donor–acceptor in organic solar cell (OSC). The MNA (SAM) layer is used as an interface instead of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) for hole injection. The HOMO-LUMO energy level of MNA-SAM molecule and the electronic charge distribution were calculated theoretically using Chemissian software. The HOMO-LUMO energy level of the MNA is calculated as EHOMO = ?5.10 eV and ELUMO = ?1.60 eV. The OSC modified with MNA showed an efficient performance in the absence of PEDOT: PSS as hole transport layer. The annealing of the ITO/SAM/P3HT: PCBM films at different temperatures are also investigated to study the effect of reducing defects. The interface structures of the organic semiconductor layer on ITO were characterized by Atomic Force Microcopy (AFM). In addition, Kelvin Probe Microscopy (KPM) is used to understand how the annealing changes the surface potential energy of the ITO/SAM substrate. Using the KPM method, which measures the surface potential energy of the films, the energy bands of the ITO were increased to maximum 5.09 eV. The ITO/SAM/P3HT: PCBM film's surface potential was determined to be 0.18 eV after being annealed at 80 °C. The surface potential of the modified films was discovered to be 0.33 V and 0.39 V when the annealing temperature was raised from 80 °C to 120 °C and 160 °C. The maximum device efficiency was demonstrated by the ITO/SAM/P3HT: PCBM film after an hour of annealing at 160 °C.  相似文献   

4.
In order to optimize polymer light emitting diode (PLED) performances, devices with holes injected through an Indium Tin Oxide (ITO) / Polyaniline (PANI) electrode into the polymer are much more efficient than devices fabricated with the anode made only by ITO. We demonstrated that by using doped PANI as hole injection layer in a polymer light emitting diode the manufacturing process can become simpler. Indeed, the pattern of conductive layer can be produced without ITO photolithography by UV exposition. As hole transporter layer, Poly(N-vinylcarbazole) (PVK) was spin coated over the doped PANI layer and a layer of tris (8-hydroxy) quinoline aluminum (Alq3) was then thermally evaporated so as to form the electron transport layer. To complete the device structure, Aluminum contacts were deposited onto the organic layers by vacuum evaporation at low pressure. The layers were characterized by X-ray small-angle diffraction, IR Raman and UV-Vis spectroscopies. Devices without PANI and with PANI as HIL were studied.  相似文献   

5.
We report on the use of indium-tin oxide surface modification, by grafting of highly polar p-disubstituted benzenes, in the fabrication of light-emitting diodes. The polar compounds possess COCl or SO2Cl grafting groups and CF3 or NO2 as highly electronegative groups, leading to the formation of a dipolar monolayer, which brings about an increase in ITO work function, thereby reducing the barrier for hole injection into luminescent polymers. We observe that the effect of this self-assembled monolayer, in terms of light-onset voltage, efficiency and luminance, is at least comparable to the use of a hole injection layer of doped poly[(3,4-ethylenedioxy)thiophene] for LEDs using poly({2-[(2-ethylhexyl)oxy]-5-methoxy-1,4-phenylene}vinylene) (MEH-PPV) and polyfluorene blends as active layers.  相似文献   

6.
In this study, polymeric nanocomposites of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) and functionalized multi-walled carbon nanotubes (MWCNTs) were spin coated on a pre-patterned ITO glass and used as a hole conducting layer in organic photovoltaic cells. The multi-layered ITO/MWCNT-PEDOT:PSS/CuPc/C60/Al devices were fabricated to investigate the current density-voltage characteristics and power conversion efficiency. The power conversion efficiency obtained from the device with a concentration of 1.0 wt% MWCNT in the PEDOT:PSS layer was increased twice as those adopted from device without MWCNT doping in the PEDOT:PSS layer and current density-voltage characteristics was also improved well with incorporation of MWCNTs.  相似文献   

7.
有机电致发光器件中载流子传输与复合的调控   总被引:1,自引:0,他引:1  
在典型的多异质结器件ITO/NPB/CBP:Ir(ppy)3/Bphen/Alq3/LiF/Al的基础上,利用有机半导体掺杂技术,设计制备了单异质结-单发光层器件、单异质结-p-i-n结构器件、单异质结-双发光层器件及无异质结-混合主体结构器件,并对其光电性能进行了研究和比较.其中,单异质结-p-i-n结构器件的最大功率效率为32.1lm/W,是参考器件的3.1倍,寿命是参考器件的15倍.无异质结-混合主体结构器件的最大功率效率为37.2lm/W,是参考器件的3.5倍,其寿命是参考器件的46倍.研究结果表明,通过对载流子传输层和发光层的优化设计,构建电子、空穴传输平衡的载流子传输层和发光层,减少或取消异质结界面仍可以实现对载流子传输和复合的有效调控,从而使器件的发光效率和寿命同时得到提高.本研究将为高性能OLED的设计提供实验基础.  相似文献   

8.
We report on reversible changes of the work function (WF) values of indium-tin-oxide (ITO) under prolonged ultraviolet (UV) and air exposure. The WF of ITO is reduced from 4.7 eV to 4.2 eV by photon absorption in ITO under UV illumination or an air mass 1.5 solar simulator (100 mW cm(-2)). Air or oxygen exposure is found to increase the WF of ITO (UV-exposed) to a value of 4.6 eV. These changes of ITO's WF lead to reversible variations of the performance of organic photovoltaic devices where ITO acts primarily as the electron collecting or hole collecting electrode. These variations can be reflected in the disappearance (or appearance) of an S-shaped kink in the J-V characteristics upon continuous UV or solar simulator illumination (or air exposure). This reversible phenomenon is ascribed to the adsorption and desorption of oxygen on the surface and grain boundaries of ITO. The use of surface modifiers to either decrease or increase the WF of ITO in organic photovoltaic devices with inverted and conventional geometries is also shown to be an effective route to stabilize the device performance under UV illumination.  相似文献   

9.
《Chemphyschem》2004,5(1):16-25
The process of charge injection plays an important role in organic semiconductor devices. We review various experimental techniques that allow injection to be separated from other competing processes, and quantify the injection efficiency of a contact. We discuss the dependence of the injection efficiency on parameters such as the energy barrier at the interface, the carrier mobility of the organic semiconductor, its carrier density (doping level), the presence of mobile ions, and the sample geometry. Based on these findings, we outline guidelines for forming ohmic contacts and present examples of contact engineering in organic semiconductor devices.  相似文献   

10.
An organosilicate polymer, based on N,N'-diphenyl-N,N'-bis(4-((E)-2-(triethoxysilyl)vinyl)phenyl)biphenyl-4,4'-diamine (TEVS-TPD) with extended conjugation between the Si atom and the aromatic amine, was prepared under mild conditions via sequential Heck and sol-gel chemistry and used as an alternative to poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the most widely used planarizing hole injection/transport layer in solution-processed organic electronic devices. Spin-coating TEVS-TPD polymer solutions yield defect-free, uniform, thin films with excellent adhesion to the ITO electrode. Upon thermal cross-linking at 180 °C, the cross-linked polymer exhibits excellent solvent resistance and electrochemical stability. Solution-processed organic light emitting diode (OLED) devices using iridium-based triplet emitting layers and cross-linked TEVS-TPD films as a hole injection/transport layer show significantly improved performance including lower leakage current, lower turn-on voltage, higher luminance, and stability at high current density, as compared to the control device prepared with PEDOT:PSS.  相似文献   

11.
研究了氧化石墨烯(GO)掺杂聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸) (PEDOT:PSS)作为空穴注入层对有机发光二极管发光性能的影响. 在PEDOT:PSS水溶液中掺入GO, 经过湿法旋涂和退火成膜后, 不仅提高了空穴注入层的空穴注入能力和导电率, 透光率也得到了相应的提高, 从而使得有机发光二极管(OLED)器件的发光性能得到了提升. 通过优化GO掺杂量发现, 当GO掺杂量为0.8%(质量分数)时, 空穴注入层的透光率达到最大值(96.8%), 此时获得的OLED器件性能最佳, 其最大发光亮度和最大发光效率分别达到17939 cd·m-2和3.74 cd·A-1. 与PEDOT:PSS 作为空穴注入层的器件相比, 掺杂GO后器件的最大发光亮度和最大发光效率分别提高了46.6%和67.6%.  相似文献   

12.
A soluble and thermally stable arylamine oligomer containing difluorenyl groups was prepared and applied to organic light‐emitting devices (OLEDs) as a hole injection layer. The oligomer layer was doped with a Lewis acid and formed by spin coating from the dichloroethane solution. The OLED with a structure of indium tin oxide (ITO)/Lewis‐acid‐doped arylamine oligomer/N,N′‐dinaphthyl‐N,N′‐diphenyl bendizine (α‐NPD)/tris(8‐quinolinolato)aluminum(III) (Alq3)/LiF/Al showed lower drive voltages and higher power efficiencies, compared with the devices without the hole injection oligomer layer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
采用修饰多层LB膜的方法制备了导电聚合物聚-3,4-乙烯二氧噻吩/二十烷酸(PEDOT:AA)复合层状有序膜, 构筑了一种导电聚合物镶嵌的多层有序膜结构. 将这种导电聚合物有序薄膜沉积于ITO电极表面, 将其作为有机电致发光二极管(OLED)的空穴注入层, 并研究了ITO/(PEDOT:AA)/MEH-PPV/Al器件的性能. 研究结果表明, 与采用聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸(PEDOT:PSS)自组装膜和旋涂膜作为空穴注入层的ITO/(PEDOT:PSS)/MEH-PPV/Al器件相比, 器件的发光效率增加, 起亮电压降低. 我们认为这是由于PEDOT:AA薄膜提供了一种有序层状结构后, 减小了ITO与MEH-PPV间的接触势垒, 改善了空穴载流子注入效率. 进一步的研究表明, 由于PEDOT:AA多层膜间靠较弱的亲水、疏水作用结合, 这种导电多层有序膜的热稳定性与普通LB膜相似, 在较高温度下发生从层状有序态到无序态的变化, 这是导致OLED器件性能发生劣化的主要原因.  相似文献   

14.
通过热蒸发在ITO阳极和聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS)层之间引入一层聚四氟乙烯(PTFE)缓冲层,研究聚四氟乙烯缓冲层对基于聚3-己基噻吩:6,6-苯基-C61丁酸甲酯(P3HT:PCBM)的有机光伏器件光电特性影响。与使用PEDOT:PSS作为缓冲层的器件相比,使用聚四氟乙烯缓冲层的有机光伏器件开路电压、短路电流和光电转换效率均有所提高。器件光电性能提高的原因是由于PTFE缓冲层大量带负电荷的氟离子在ITO/PTFE界面处形成偶极子层, 改善了内建电场,从而使得空穴电荷的收集更加有利。  相似文献   

15.
A phenomenological model has been developed to account for the results of impedance/admittance spectroscopy measurements from light-emitting electrochemical cells (LECs) comprising a polymer electrolyte and two different conjugated polymers used as organic semiconductor. The application of a d.c. offset bias superimposed to the a.c. modulation voltage was used to observe the transition from the behavior prior to device operation and after the formation of the electrochemical p-i-n junction. The analysis of the whole device “conductivity” as a function of the applied bias and of the frequency was used to support the assumptions considered to develop the model. The results show that the device, after the p-i-n junction formation, can be considered as composed by two highly conductive electrochemically doped (n and p) regions and a thin (few tens nanometers), insulating layer, where the electrical current is dominated by electronic charge carrier injection via tunneling through a rectangular energy barrier. Before the p-i-n junction formation, there is no doping of semiconductor material, and the device electrical properties are dominated by the intrinsic electronic charge carriers in the organic semiconductor. Results from devices made of organic semiconductors with different band gap energy and different layer thicknesses are used to corroborate the proposed model.  相似文献   

16.
以双极性小分子4,9-二(4-(2,2-二苯乙烯基)苯基)萘并[2,3-c][1,2,5]噻二唑(BDPNTD)为发光层,制备得到了单层非掺杂红色荧光有机发光二极管.通过在阳极ITO与有机层BDPNTD之间插入1nm厚的WO3或MoO3薄膜,获得了单层有机发光二极管:起亮电压为2.4V,最大发光亮度为4950cd·m-2,发光波长为636nm,CIE坐标约为(0.65,0.35).这证明了作为修饰层的WO3或MoO3薄膜可以改进ITO/BDPNTD界面的空穴注入,进而在器件中实现空穴与电子的平衡.  相似文献   

17.
An ultrathin film of polybithiophene (PBTh), used in organic electroluminescent (EL) devices, was generated by an electrochemical method with a conducting indium tin oxide (ITO) glass as the working electrode. The light-emitting layer could be deposited directly onto the PBTh by using spin coating for fabrication of the organic EL devices. It was found that the film of PBTh as the hole-transport layer for the EL device could effectively raise the EL intensity and efficiency. The EL intensity of the ITO/PBTh/emitting layer/Al device is about 100 times as strong as that of the ITO/emitting layer/Al device at the same current density of 50 mA/cm2.  相似文献   

18.
A novel organic hyperbranched copper phthalocyanine was synthesized for use as a hole injection nanolayer on ITO in organic light‐emitting diodes (OLEDs). This material is soluble in organic solvents which allows for processing under anhydrous conditions, unlike water based conventional polymer hole injection layer materials such as poly(3,4‐ethylenedioxythiophene)(PEDOT)/polystyrene sulfonate (PSS). The hyperbranched layer increased the luminous efficiency and brightness of single layer OLED devices, in addition to reducing current leakage which causes crosstalk in panel devices, compared to devices prepared from PEDOT/PSS. Therefore, this material is more suitable for OLED applications due to its processing and performance advantages over conventional commercial conducting polymer compositions.

  相似文献   


19.
This article describes the molecular structure-function relationship for a series of biphenylthiol derivatives with varying torsional degree of freedom in their molecular backbone when self-assembled on gold electrodes. These biphenylthiol molecules chemisorbed on Au exhibit different tilt angles with respect to the surface normal and different packing densities. The charge transport through the biphenylthiol self-assembled monolayers (SAMs) showed a characteristic decay trend with the effective monolayer thickness. Based on parallel pathways model the tunneling decay factor β was estimated to be 0.27??(-1) . The hole mobility of poly(3-hexylthiophene)-based thin-film transistors incorporating a biphenylthiol SAM coating the Au source and drain electrodes revealed a dependence on the injection barrier with the highest occupied molecular orbital (HOMO) level of the semiconductor. The possible role of the resistivity of the SAMs on transistor electrodes on the threshold voltage shift is discussed. The control over the chemical structure, electronic properties, and packing order of the SAMs provides a versatile platform to regulate the charge injection in organic electronic devices.  相似文献   

20.
氟化吡唑啉蓝色电致发光器件的制备   总被引:3,自引:0,他引:3  
自从Tang等[1]首次报道了多层有机电致发光器件以来, 人们研究了大量的新型材料[2,3], 其中较吸引人的方法是将高量子产率的荧光染料掺杂于传输层中制备电致发光器件[4~9]. 三芳基吡唑啉化合物具有较高的荧光产率和蓝色发射特性. 这些化合物具有分子内电荷传输性能, 在激发状态下分子可发生扭曲形成电子给体-受体结构[10], 因此在EL器件制备过程中既可以作为载流子传输材料, 又可以作为发光材料来应用. 虽然吡唑啉类化合物在固态下具有空穴传输特性[11], 也有较高的荧光产率, 但它们的玻璃转化转变温度较低, 在制备EL器件时, 如单独作为传输层或发射层时, 该类材料易于结晶, 从而使得器件的性能快速衰减. 如果将它们分散于聚合物等主体中, 就会避免重结晶问题. 我们在三苯基吡唑啉中引入强吸电子基团CF3, 导致分子的刚性增强和荧光强度增加, 熔点升高. 将氟化三苯基吡唑啉(FTPP)作为发光中心制作了两类EL器件, 均获得蓝光发射. FTPP分子结构见图1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号