首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
采用修饰多层LB膜的方法制备了导电聚合物聚-3,4-乙烯二氧噻吩/二十烷酸(PEDOT:AA)复合层状有序膜, 构筑了一种导电聚合物镶嵌的多层有序膜结构. 将这种导电聚合物有序薄膜沉积于ITO电极表面, 将其作为有机电致发光二极管(OLED)的空穴注入层, 并研究了ITO/(PEDOT:AA)/MEH-PPV/Al器件的性能. 研究结果表明, 与采用聚3,4-乙烯二氧噻吩/聚苯乙烯磺酸(PEDOT:PSS)自组装膜和旋涂膜作为空穴注入层的ITO/(PEDOT:PSS)/MEH-PPV/Al器件相比, 器件的发光效率增加, 起亮电压降低. 我们认为这是由于PEDOT:AA薄膜提供了一种有序层状结构后, 减小了ITO与MEH-PPV间的接触势垒, 改善了空穴载流子注入效率. 进一步的研究表明, 由于PEDOT:AA多层膜间靠较弱的亲水、疏水作用结合, 这种导电多层有序膜的热稳定性与普通LB膜相似, 在较高温度下发生从层状有序态到无序态的变化, 这是导致OLED器件性能发生劣化的主要原因.  相似文献   

2.
陈红征 《高分子科学》2014,32(4):395-401
Stable aqueous amino-grafted silicon nanoparticles(SiNPs-NH2) were prepared via one-pot solution method. By grafting amino groups on the particle surface, the dispersion of SiNPs in water became very stable and clear aqueous solutions could be obtained. By incorporating SiNPs-NH2 into the hole transport layer of poly(3,4-ethylenedioxythiophene)/polystyrene sulfonic acid(PEDOT:PSS), the performance of polymer solar cells composed of poly[2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylene vinylene](MEH-PPV):[6,6]-phenyl-C61-butyric acid methyl ester(PCBM) as active layer can be improved. SiNPs-NH2 are dispersed uniformly in the PEDOT:PSS solution and help form morphologies with small-sized domains in the PEDOT:PSS film. SiNPs-NH2 serve as screens between conducting polymer PEDOT and ionomer PSS to improve the phase separation and charge transport of the hole transport layer. As a result, the sheet resistance of PEDOT:PSS thin films is decreased from(93 ± 5) × 105 to(13 ± 3) × 105 ?/□. The power conversion efficiency(PCE) of polymer solar cells was thus improved by 9.8% for devices fabricated with PEDOT:PSS containing 1 wt% of SiNPs-NH2, compared with the devices fabricated by original PEDOT:PSS.  相似文献   

3.
A novel organic hyperbranched copper phthalocyanine was synthesized for use as a hole injection nanolayer on ITO in organic light‐emitting diodes (OLEDs). This material is soluble in organic solvents which allows for processing under anhydrous conditions, unlike water based conventional polymer hole injection layer materials such as poly(3,4‐ethylenedioxythiophene)(PEDOT)/polystyrene sulfonate (PSS). The hyperbranched layer increased the luminous efficiency and brightness of single layer OLED devices, in addition to reducing current leakage which causes crosstalk in panel devices, compared to devices prepared from PEDOT/PSS. Therefore, this material is more suitable for OLED applications due to its processing and performance advantages over conventional commercial conducting polymer compositions.

  相似文献   


4.
研究了氧化石墨烯(GO)掺杂聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸) (PEDOT:PSS)作为空穴注入层对有机发光二极管发光性能的影响. 在PEDOT:PSS水溶液中掺入GO, 经过湿法旋涂和退火成膜后, 不仅提高了空穴注入层的空穴注入能力和导电率, 透光率也得到了相应的提高, 从而使得有机发光二极管(OLED)器件的发光性能得到了提升. 通过优化GO掺杂量发现, 当GO掺杂量为0.8%(质量分数)时, 空穴注入层的透光率达到最大值(96.8%), 此时获得的OLED器件性能最佳, 其最大发光亮度和最大发光效率分别达到17939 cd·m-2和3.74 cd·A-1. 与PEDOT:PSS 作为空穴注入层的器件相比, 掺杂GO后器件的最大发光亮度和最大发光效率分别提高了46.6%和67.6%.  相似文献   

5.
Lee  Joo-Won  kim  jai-Kyeong  Yoon  Young-Soo 《中国化学》2010,28(1):115-118
High efficiency organic light‐emitting‐devices (OLED) have been fabricated by incorporation of a polymeric layer as a controller of the unbalanced charge. In device configuration of ITO/PEDOT:PSS/PVK/Alq3/LiF:Al, poly(N‐vinylcarbazole) (PVK) was selected as a block‐ing layer (BL) because it has a hole transporting property and a higher band gap, especially a lower LUMO level than the emitting layer (Alq3) and a higher HOMO level than the hole injection layer (PEDOT: PSS). As a result, the optimal structure with this bl layer showed a peak efficiency of 6.89 cd/A and 2.30 lm/W compared to the device without the PVK layer of 1.08 cd/A, 0.27 lm/W. This result shows that the PVK layer could effec‐tively block the electrons from metal cathode and confine them in the emitting layer and accomplish the charge balance, which leads to enhanced hole‐electron balance for achieving high recombination efficiency.  相似文献   

6.
This article reports the synthesis and characterization of a novel thermally crosslinkable hole‐transporting poly (fluorene‐co‐triphenylamine) (PFO‐TPA) by Suzuki coupling reaction, followed with its application in the fabrication of multilayer light‐emitting diodes by wet processes. The thermal, photophysical, and electrochemical properties of PFO‐TPA were investigated by differential scanning calorimeter, thermogravimetric analysis, optical spectroscopy, and cyclic voltammetry, respectively. Thermally crosslinked PFO‐TPA, through pendant styryl groups, demonstrates excellent thermal stability (Td > 400 °C, Tg = 152 °C), solvent resistance, and film homogeneity. Its highest occupied molecular orbital level (?5.30 eV) lies between those of PEDOT:PSS (?5.0 ~ ?5.2 eV) and poly(9,9‐dioctylfluorene) (PFO: ?5.70 eV), forming a stepwise energy ladder to facilitate hole injection. Multilayer device with crosslinked PFO‐TPA as hole‐injection layer (HIL) (ITO/PEDOT:PSS/HIL/PFO/LiF/Ca/Al) was readily fabricated by successive spin‐coating processes, its maximum luminance efficiency (3.16 cd/A) were about six times higher than those without PFO‐TPA layer (0.50 cd/A). The result of hole‐only device also confirmed hole‐injection and hole‐transport abilities of crosslinked PFO‐TPA layer. Consequently, the device performance enhancement is attributed to more balanced charges injection in the presence of crosslinked PFO‐TPA layer. The thermally crosslinkable PFO‐TPA is a promising material for the fabrication of efficient multilayer polymer light‐emitting diodes because it is not only a hole‐transporting polymer but also thermally crosslinkable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
This contribution presents a kind of novel and neutral network films based on EDOT formed by in situ electrocopolymerization (ECP). The ECP films which are neutral and colorless exhibit the conductivity of 0.2–0.5 S · cm−1, WF of 4.79–5.20 eV, and RMS roughness of 3.51–5.26 nm. The electroluminescent devices where ECP films acted as hole‐transport layer (HTL) exhibit higher brightness, current density, efficiency (20–30% improvement), and stability than that of PEDOT:PSS HTL device. The ECP films also significantly benefit the stability of neighboring organic layer compared to PEDOT:PSS. This kind of new ECP films affords more opportunities to develop organic light‐emitting diodes (OLEDs) with high performances and stability.

  相似文献   


8.
在基于钙钛矿/富勒烯平面异质结的钙钛矿太阳电池中,PEDOT:PSS是最常使用的空穴传输材料. 但PEDOT:PSS呈酸性,会腐蚀金属氧化物透明电极,使器件的电极界面稳定性欠佳. 本文将高功函的氧化钨(WOx)插入到PEDOT:PSS和FTO之间,形成WOx/PEDOT:PSS复合空穴传输层,这样既可以避免PEDOT:PSS与FTO直接接触,提高器件的稳定性,又可以进一步降低电极界面的接触势垒,从而提升器件的性能. 作者研究了复合传输层对透光率、钙钛矿形貌、钙钛矿结晶、光伏性能及器件稳定性的影响. 基于WOx/PEDOT:PSS复合空穴传输层的电池效率可以达到12.96%,比单纯的PEDOT:PSS的电池效率(10.56%)提升了22.7%,同时器件的稳定性也得到大幅改善.  相似文献   

9.
In this study, polymeric nanocomposites of poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) and functionalized multi-walled carbon nanotubes (MWCNTs) were spin coated on a pre-patterned ITO glass and used as a hole conducting layer in organic photovoltaic cells. The multi-layered ITO/MWCNT-PEDOT:PSS/CuPc/C60/Al devices were fabricated to investigate the current density-voltage characteristics and power conversion efficiency. The power conversion efficiency obtained from the device with a concentration of 1.0 wt% MWCNT in the PEDOT:PSS layer was increased twice as those adopted from device without MWCNT doping in the PEDOT:PSS layer and current density-voltage characteristics was also improved well with incorporation of MWCNTs.  相似文献   

10.
苏斌  刘莹  朱恩伟  车广波 《化学通报》2020,83(8):698-703
钙钛矿太阳能电池(PSCs)因易于制备、生产成本低和能量转换效率高而受到广泛关注。聚乙撑二氧噻吩-聚(苯乙烯磺酸盐)(PEDOT∶PSS)由于具有易低温加工、透光度高和适宜空穴迁移率等特点而成为PSCs中空穴传输层的研究热点。本文简述了倒置PSCs的结构及工作原理,重点介绍了掺杂PEDOT∶PSS空穴传输层在PSCs领域的研究现状。分别从有机化合物掺杂剂、无机化合物掺杂剂和表面活性剂掺杂剂三个类别概述了掺杂PEDOT∶PSS空穴传输层对PSCs性能的影响。最后,对该领域存在的问题提出潜在措施以改善PEDOT∶PSS掺杂层在PSCs中的应用。  相似文献   

11.
黄鹏  元利刚  李耀文  周祎  宋波 《物理化学学报》2018,34(11):1264-1271
p-i-n型的钙钛矿太阳能电池中,聚3, 4-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)作为最常用的空穴传输层(HTL)材料之一,由于其存在着吸湿性强以及能级与钙钛矿层不匹配等缺点,限制了它的应用。基于此,本文拟采用将左旋多巴(DOPA)和N, N-二甲基亚砜(DMSO)共同掺杂于PEDOT:PSS作为HTL的简单方法制备高性能p-i-n型钙钛矿太阳能电池。研究结果表明,DOPA和DMSO共掺杂PEDOT:PSS可以有效的调节HTL的能级并提高其导电性,器件的能量转化效率由13.35%显著提高到了17.54%。进一步研究发现,相比于未掺杂或单一掺杂的PEDOT:PSS,在DOPA和DMSO共掺杂的PEDOT:PSS上更有利于生长大尺寸、高结晶度的钙钛矿晶体;同时稳态/瞬态荧光和交流阻抗测试表明器件的内部载流子分离和传输更加有效。  相似文献   

12.
We present x-ray photoemission spectroscopy and highly resolved near-edge x-ray absorption fine structure spectroscopy measurements taken on pentacene thin films of different thicknesses deposited on a spin coated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) substrate. Thin films of pentacene were prepared by using organic molecular beam deposition in situ using strictly controlled evaporation conditions. Our investigations show that pentacene thin films on PEDOT:PSS are characterized by upright standing molecules. Due to the strong dichroic behavior, the calculated values of the molecular orientation give a clear indication not only of the real molecular arrangement in the films but also of a high orientational order. This high degree of molecular orientation order is a characteristic already of the first layer. The films show the tendency to grow on the PEDOT:PSS substrate following an island-fashion mode, with a relatively narrow intermixing zone at the interface between the pentacene and the polymer blend. The peculiarity of the growth of pentacene on PEDOT:PSS is due to the fact that the substrate does not offer any template for the nucleated films and thus exerts a lateral order toward the crystal structure arrangement. Under these conditions, the upright orientation of the molecules in the films minimizes the energy required for the system stability.  相似文献   

13.
Photolithographically patterned highly conductive (~1400 S/cm) poly(3,4‐ethylenedioxythio‐phene):poly(styrenesulfonate) (PEDOT:PSS) films are demonstrated as electrodes for organic light emitting diodes (OLEDs). With the assistance of hydrofluoroether (HFE) solvents and fluorinated photoresists, high‐resolution passive‐matrix OLEDs with PEDOT:PSS electrodes are fabricated, in which the OLEDs show comparable performance to those devices prepared on the indium tin oxide (ITO) electrodes. This photolithographic patterning process for PEDTO:PSS has great potential for applications which require flexible electrodes. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1221–1226  相似文献   

14.
通过热蒸发在ITO阳极和聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS)层之间引入一层聚四氟乙烯(PTFE)缓冲层,研究聚四氟乙烯缓冲层对基于聚3-己基噻吩:6,6-苯基-C61丁酸甲酯(P3HT:PCBM)的有机光伏器件光电特性影响。与使用PEDOT:PSS作为缓冲层的器件相比,使用聚四氟乙烯缓冲层的有机光伏器件开路电压、短路电流和光电转换效率均有所提高。器件光电性能提高的原因是由于PTFE缓冲层大量带负电荷的氟离子在ITO/PTFE界面处形成偶极子层, 改善了内建电场,从而使得空穴电荷的收集更加有利。  相似文献   

15.
Carrier balance is essential to obtain efficient emission in polymer light‐emitting diodes (PLEDs). A new polymer 3P5O composed of alternating p‐terphenyl and tetraethylene glycol ether segments is designed and synthesized by the Suzuki coupling reaction and successfully employed as hole‐buffer layer to improve carrier balance. Multilayer PLEDs [ITO/PEDOT:PSS/ 3P5O /SY/LiF/Al], with Super Yellow (SY) as the emitting layer and 3P5O as the hole‐buffer layer, reveal maximum luminance (17,050 cd/m2) and maximum current efficiency (6.6 cd/A) superior to that without the hole‐buffer layer (10,017 cd/m2, 3.0 cd/A). Moreover, it also shows better performance than that using conventional BCP as hole‐blocking layer [ITO/PEDOT:PSS/SY/BCP/LiF/Al (80 nm): 13,639 cd/m2, 4.1 cd/A]. The performance enhancement has been attributed to hole‐buffering characteristics of 3P5O that results in improved carrier recombination ratio and wider carrier recombination region. Current results indicate that the 3P5O is a promising hole‐buffer polymer to enhance the performance of optoelectronic devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 785–794  相似文献   

16.
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a widely used hole transporting layer (HTL) in organic solar cells (OSCs), but its acidity severely reduces the stability of devices. Until now, very few HTLs were developed to replace PEDOT:PSS toward stable and high-performance OSCs. Herein, a new cobalt-lanthanum (Co-La) inorganic system was reported as HTL to show a high conversion efficiency (PCE) of 18.82 %, which is among the top PCEs in binary OSCs. Since electron-rich outer shell of La atom can interact with Co atom to form charge transfer complex, the work function and conductivity of the Co-La system could be simultaneously enhanced compared to Co or La-based HTLs. This Co-La system could also be applied into other OSCs to show high performance. All these results demonstrate that binary Co-La systems as HTL can efficiently tackle the issue in hole transporting and show powerful application in OSCs to replace PEDOT:PSS.  相似文献   

17.
多种有机发光材料已被应用于电致发光(EL)器件的制备,其荧光效率远比无机发光材料高。与光激发直接产生单重态洋鬼子不同,电致发光过程是电子空穴分别由相反极性的电极注入(非成对电子注入),三重态和单重态激子同时生成,按自旋统计理论预测,三重态和单重态子的比例为3:1。由于三重态的跃迁是自旋禁阻的,大部分有机分子的三重态激子发光效率极低,有机电致发光器件的最高交率限制在25%(对于光致发光效率100%的理想情况)。为进一步提高器件效率,人们开始设想和实施对通常认为是无效激发的75%的三重激发态进行利用,其关键是筛选出适于器件应用的高效率三重态发光材料,据此我们选择过渡金属配合物Cu4(C≡CPh4)4L2[L=1,8-bis9diphenyl phosphino)-3,6-dioxaoctane](以下简称Cu4)进行了器件性能研究。  相似文献   

18.
Efficient white-polymer-light-emitting devices (WPLEDs) have been fabricated with a single emitting layer containing a hole-transporting host polymer,poly(N-vinylcarbzole),and an electron-transporting auxiliary,1,3-bis[(4-tert-butylphenyl)-1,3,4-oxadiazolyl]-phenylene,codoped with two phosphorescent dyes:Iridium(III)bis (2-(4,6-difluorophenyl)-pyridinato-N,C2') picolinate (FIrpic) and home-made Ir-G2 for blue and red emission,respectively.With the structure of ITO/PEDOT:PSS 4083(40 nm)/emission layer(80 nm)...  相似文献   

19.
A new neutral green electrochromic (EC) polymer, namely poly(5,8-bis(2,3-dihydro[3,4-B][1,4]dioxin-5-yl)-2,3-dual(4-(hexadecyloxy) phenyl) quinoxaline) (PBOPEQ) was designed and synthesized. PBOPEQ-poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film was further prepared by electrochemical polymerization on the PEDOT:PSS modified indium tin oxide (ITO) electrode. Scanning electron microscopy images and ultrasonic experiment indicate that PBOPEQ-PEDOT:PSS film shows better film-forming ability and stronger interface adhesive with ITO electrode compared to that of PBOPEQ film. It is worth mentioning that PBOPEQ-PEDOT:PSS film presents more reversible redox characteristic, better optical contrast (~40%) and coloration efficiency (~230 cm2 C−1) at 678 nm, excellent EC stability and memory property (36 hr), which should be ascribed to that the electroactive PEDOT:PSS layer facilitates the charge transfer process and enhances the ion doping/dedoping properties. EC device based on PBOPEQ-PEDOT:PSS film exhibits superior integrated performance such as reversible color change from green to transmissive, optical contrast of 41.0% and switching time less than 1 s. Accordingly, PBOPEQ-PEDOT:PSS is an excellent EC material when combined with electroactive PEDOT:PSS interface layer for achieving high performance device, which shows potential applications in displays, electronic papers, and tags.  相似文献   

20.
A new series of poly(2,3‐diphenyl‐1,4‐phenylenevinylene) derivatives containing dendritic side groups were synthesized. Different generations of dendrons were integrated on the pendant phenyl ring to investigate their effect on optical and electrical properties of final polymers. Homopolymers can not be obtained via the Gilch polymerization because of sterically bulky dendrons. By controlling the feed ratio of different monomers during polymerization, dendron‐containing copolymers with high molecular weights were obtained. The UV–vis absorption and photoluminescent spectra of the thin films are pretty close; however, quantum efficiency is significantly enhanced with increasing the generation of dendrons. The electrochemical analysis reveals that hole‐injection is also improved by increasing dendritic generation. Double‐layer light‐emitting devices with the configuration of ITO/PEDOT:PSS/polymer/Ca/Al were fabricated. High generation dendrons bring benefit of improved device performance. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3440–3450, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号