首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Integration of B-spline geometry and ANCF finite element analysis   总被引:1,自引:0,他引:1  
The goal of this investigation is to introduce a new computer procedure for the integration of B-spline geometry and the absolute nodal coordinate formulation (ANCF) finite element analysis. The procedure is based on developing a linear transformation that can be used to transform systematically the B-spline representation to an ANCF finite element mesh preserving the same geometry and the same degree of continuity. Such a linear transformation that relates the B-spline control points and the finite element position and gradient coordinates will facilitate the integration of computer aided design and analysis (ICADA). While ANCF finite elements automatically ensure the continuity of the position and gradient vectors at the nodal points, the B-spline representation allows for imposing a higher degree of continuity by decreasing the knot multiplicity. As shown in this investigation, a higher degree of continuity can be systematically achieved using ANCF finite elements by imposing linear algebraic constraint equations that can be used to eliminate nodal variables. The analysis presented in this study shows that continuity of the curvature vector and its derivative which corresponds in the cubic B-spline representation to zero knot multiplicity can be systematically achieved using ANCF finite elements. In this special case, as the knot multiplicity reduces to zero, the recurrence B-spline formula causes two segments to automatically blend together forming one cubic segment defined on a larger domain. Similarly in this special case, the algebraic constraint equations required for the C 3 continuity convert two ANCF cubic finite elements to one finite element, demonstrating the strong relationship between the B-spline representation and the ANCF finite element representation. For the same order of interpolation, higher degree of continuity at the finite element interface can lead to a coarser mesh and to a lower dimensional model. Using the B-spline/ANCF finite element transformation developed in this paper, the equations of motion of a finite element mesh that represents exactly the B-spline geometry can be developed. Because of the linearity of the transformation developed in this investigation, all the ANCF finite element desirable features are preserved; including the constant mass matrix that can be used to develop an optimum sparse matrix structure of the nonlinear multibody system dynamic equations.  相似文献   

2.
In this investigation, numerical convergence of finite element solutions obtained using the B-spline approach and the absolute nodal coordinate formulation (ANCF) is discussed. Furthermore, equivalence of the two formulations with different orders of polynomials and degrees of continuity is demonstrated by several numerical examples. The degree of continuity can be easily controlled in B-spline elements by changing knot multiplicities, while continuity conditions associated with higher order derivatives need to be imposed to achieve C 2 and higher continuities in ANCF elements. In order to compare element performances of the third and quartic B-spline and ANCF elements, the three-node quartic ANCF beam element is developed. It is demonstrated in several numerical examples that use of B-spline and ANCF elements with same orders and continuities leads to identical results. Furthermore, effects of polynomial orders and continuities on the accuracy and numerical convergence are demonstrated.  相似文献   

3.
Existing multibody system (MBS) algorithms treat articulated system components that are not rigidly connected as separate bodies connected by joints that are governed by nonlinear algebraic equations. As a consequence, these MBS algorithms lead to a highly nonlinear system of coupled differential and algebraic equations. Existing finite element (FE) algorithms, on the other hand, do not lead to a constant mesh inertia matrix in the case of arbitrarily large relative rigid body rotations. In this paper, new FE/MBS meshes that employ linear connectivity conditions and allow for arbitrarily large rigid body displacements between the finite elements are introduced. The large displacement FE absolute nodal coordinate formulation (ANCF) is used to obtain linear element connectivity conditions in the case of large relative rotations between the finite elements of a mesh. It is shown in this paper that a linear formulation of pin (revolute) joints that allow for finite relative rotations between two elements connected by the joint can be systematically obtained using ANCF finite elements. The algebraic joint constraint equations, which can be introduced at a preprocessing stage to efficiently eliminate redundant position coordinates, allow for deformation modes at the pin joint definition point, and therefore, this new joint formulation can be considered as a generalization of the pin joint formulation used in rigid MBS analysis. The new pin joint deformation modes that are the result of C 0 continuity conditions, allow for the calculations of the pin joint strains which can be discontinuous as the result of the finite relative rotation between the elements. This type of discontinuity is referred to in this paper as nonstructural discontinuity in order to distinguish it from the case of structural discontinuity in which the elements are rigidly connected. Because ANCF finite elements lead to a constant mass matrix, an identity generalized mass matrix can be obtained for the FE mesh despite the fact that the finite elements of the mesh are not rigidly connected. The relationship between the nonrational ANCF finite elements and the B-spline representation is used to shed light on the potential of using ANCF as the basis for the integration of computer aided design and analysis (I-CAD-A). When cubic interpolation is used in the FE/ANCF representation, C 0 continuity is equivalent to a knot multiplicity of three when computational geometry methods such as B-splines are used. C 2 ANCF models which ensure the continuity of the curvature and correspond to B-spline knot multiplicity of one can also be obtained. Nonetheless, B-spline and NURBS representations cannot be used to effectively model T-junctions that can be systematically modeled using ANCF finite elements which employ gradient coordinates that can be conveniently used to define element orientations in the reference configuration. Numerical results are presented in order to demonstrate the use of the new formulation in developing new chain models.  相似文献   

4.
本文系统地研究了基于一致旋转场列式的绝对节点坐标 (ANCF consistentrotation-based formulation, ANCF/CRBF)平面梁单元的泊松闭锁问题及闭锁缓解技术.为了全面理解该类型单元的闭锁特性及明确单元的应用范围,文中首先开发了两种新的ANCF/CRBF刚性截面梁单元, 新单元在ANCF全参数梁的基础上,对梯度向量施加正交矩阵约束, 得到梯度与转角对时间导数之间的速度转换矩阵,从而引入转角参数. 新单元节点处完全消除了泊松闭锁和剪切效应,这是与传统ANCF/CRBF刚性截面梁单元的不同之处. 然后,对比分析了这三种ANCF/CRBF刚性截面梁单元泊松闭锁的特点.发现该类型单元对节点的横向梯度施加了运动学约束, 导致节点处截面不能变形,无法捕捉泊松效应, 但是单元内部能完全捕捉,这种不连续情况会加重单元整体的泊松闭锁问题. 并且发现对单元梯度约束的越多,闭锁问题越严重. 随后, 分别采用两种闭锁缓解技术, 弹性线方法和应变分解方法,进一步研究了单元的收敛性. 最终,通过多种静力学和动力学测试研究了泊松闭锁对ANCF/CRBF平面梁单元计算精度的影响及闭锁缓解技术在该类型单元上的缓解效果.   相似文献   

5.
The Absolute Nodal Coordinate Formulation (ANCF) has been initiated in 1996 by Shabana (Computational Continuum Mechanics, 3rd edn., Cambridge: Cambridge University Press, 2008). It introduces large displacements of planar and spatial finite elements relative to the global reference frame without using any local frame. A sub-family of beam, plate and cable finite elements with large deformations are proposed and employed the 3D theory of continuum mechanics. In the ANCF, the nodal coordinates consist of absolute position coordinates and gradients that can be used to define a unique rotation and deformation fields within the element. In contrast to other large deformation formulations, the equations of motion contain constant mass matrices as well as zero centrifugal and Coriolis inertia forces. The only nonlinear term is a vector of elastic forces. This investigation concerns a way to generate new finite element in the ANCF for laminated composite plates. This formulation utilizes the assumption that the bonds between the laminae are thin and shear is non-deformable. Consequently, the Equivalent Single Layer, ESL model, is implemented. In the ESL models, the laminate is assumed to deform as a single layer, assuming a smooth variation of the displacement field across the thickness. In this paper, the coupled electromechanical effect of Piezoelectric Laminated Plate is imposed within the ANCF thin plate element, in such a way as to achieve the continuity of the gradients at the nodal points, and obtain a formulation that automatically satisfies the principle of work and energy. Convergence and accuracy of the finite-element ANCF Piezoelectric Laminated Plate is demonstrated in geometrically nonlinear static and dynamic test problems, as well as in linear analysis of natural frequencies. The computer implementation and several numerical examples are presented in order to demonstrate the use of the formulation developed in this paper. A comparison with the commercial finite element package COMSOL MULTIPHYSICS () is carried out with an excellent agreement.  相似文献   

6.
The element created in this investigation is based on the it absolute nodal coordinate formulation (ANCF) which has been successfully used in flexible multibody system dynamic and integration of computer aid design and analysis (ICADA). When modeling a B-spline curve with ANCF beam element, it is the common manner to convert this curve into a series of Bézier curves because the systematical conversion between ANCF beam element and a Bézier curve has already been built. In order to avoid the constrain equation produced in this method and to express a B-spline curve using only one element, an alternative approach is developed, leading to the piecewise ANCF (PANCF) beam element. It is demonstrated that when two ANCF beam elements are connected according to a particular continuity, they can constitute a PANCF element. Besides, a new PANCF element will be produced when an ANCF element is connected to an existing PANCF element. The continuity condition can be automatically ensured by the selection of nodal coordinates and the calculation of the piecewise continuous shape functions. The algorithm for converting a B-spline curve to a PANCF beam element is then given. There also are discussions on the features of PANCF element. When two neighboring segments of PANCF element have the same assumed length, the position vector at the interface cannot be expressed by the other coordinates so the position vector is preserved in the \(C^{2}\) continuous situation. Two examples are given to conclude the interpolation and continuity properties of the shape function and to demonstrate the feasibility of this PANCF in the ICADA.  相似文献   

7.
8.
Space-time finite element solutions of the convection–dispersion equation using higher-order nodal continuity and Hermitian polynomial shape functions are described. Five separate elements ranging from a complete linear element with C0,0 nodal continuity to a complete first-order Hermitian element with C1,1 nodal continuity are subjected to detailed analysis. Wave deformation analyses identify the source of leading or trailing edge oscillations, trailing edge oscillations being the major source of difficulty. These observations are confirmed by numerical experiments which further demonstrate the potential of higher-order nodal continuity. The performance of the complete first-order Hermitian element is quite satisfactory and measurably superior to the linear element.  相似文献   

9.
The focus of this investigation is to study the mechanics of the human knee using a new method that integrates multibody system and large deformation finite element algorithms. The major bones in the knee joint consisting of the femur, tibia, and fibula are modeled as rigid bodies. The ligaments structures are modeled using the large displacement finite element absolute nodal coordinate formulation (ANCF) with an implementation of a Neo-Hookean constitutive model that allows for large change in the configuration as experienced in knee flexion, extension, and rotation. The Neo-Hookean strain energy function used in this study takes into consideration the near incompressibility of the ligaments. The ANCF is used in the formulation of the algebraic equations that define the ligament/bone rigid connection. A unique feature of the ANCF model developed in this investigation is that it captures the deformation of the ligament cross section using structural finite elements such as beams. At the ligament/bone insertion site, the ANCF is used to define a fully constrained joint. This model will reflect the fact that the geometry, placement and attachment of the two collateral ligaments (the LCL and MCL), are significantly different from what has been used in most knee models developed in previous investigations. The approach described in this paper will provide a more realistic model of the knee and thus more applicable to future research studies on ligaments, muscles and soft tissues (LMST). Current finite element models are limited due to simplified assumptions for the spatial and time dependent material properties inherent in the anisotropic and anatomic constraints associated with joint stability, and the static conditions inherent in the analysis. The ANCF analysis is not limited to static conditions and results in a fully dynamic model that accounts for the distributed inertia and elasticity of the ligaments. The results obtained in this investigation show that the ANCF finite elements can be an effective tool for modeling very flexible structures like ligaments subjected to large flexion and extension. In the future, the more realistic ANCF models could assist in examining the mechanics of the knee to study knee injuries and possible prevention means, as well as an improved understanding of the role of each individual ligament in the diagnosis and assessment of disease states, aging and potential therapies.  相似文献   

10.
In this paper, the process by which geometrical and structural matrices of plate finite elements employing absolute nodal coordinate formulation (ANCF) are constructed is studied. The kinematic and topological properties of an arbitrary plate finite element are described using universal digital code dncm that provides systematic enumeration of finite elements. This code is formed using the element’s dimension d, the number of nodes it possesses n, the number of scalar coordinates per node c, and a multiplier describing the process of transforming a conventional finite element to an ANCF element m. The detailed generation of a new type of triangular plate finite element 2343 using numerical computation of shape functions is also discussed in the paper. The new triangular element employs position vectors and slope vectors up to second-order mixed-derivative slope vector. A detailed derivation of the equations of motion of the element is also provided and examples of its numerical simulation and validation presented.  相似文献   

11.
A solid tetrahedral finite element employing the absolute nodal coordinate formulation (ANCF) is presented. In the ANCF, the mass matrix and vector of the generalized gravity forces used in the equations of motion are constant, whereas the vector of the elastic forces is highly nonlinear. The proposed solid element uses translations of nodes as sets of nodal coordinates. The tetrahedral shape of the element makes it suitable for modeling structures with complex shapes, and the small number of the degrees of freedom enables good performance and versatile application to problems of structural dynamics. The accuracy and convergence of the element were investigated using statics and dynamics benchmarks and a practical industry application.  相似文献   

12.
吴懋琦  谭述君  高飞雄 《力学学报》2021,53(10):2776-2789
现有的对有限变形条件下柔性结构变形重构的研究往往单纯基于曲率与应变间的几何关系, 同时忽略了被测体的纵向变形及其与弯曲变形的耦合效应. 为得到一种更加精确且能借助现有的力学工具进行应用方向扩展的变形重构方法, 以平面梁为对象, 借鉴变形重构逆有限元法的思想, 将平面梁的变形重构问题视作一类最优化问题. 首先, 通过引入绝对节点坐标法(absolute nodal coordinate formulation, ANCF)对柔性结构大变形下非线性的平面梁应变?位移关系进行精确描述, 构造了一种逆梯度缩减ANCF平面索梁单元. 然后, 对此逆ANCF单元进行改进, 在简化节点自由度的同时通过引入罚函数确保单元节点处的曲率连续性, 既保证了本问题的适定性, 也提升了最终解的精确性. 最后, 基于该单元利用Newton法构造了平面梁有限变形下变形重构问题的两种求解算法, 即逐单元算法和多单元整体算法, 以实现不同需求下的稳定求解. 数值仿真结果表明, 本方法在大变形条件下的变形重构误差小于1%, 而且在测点较少的情况下依然保持较高的精度, 同时验证了本方法的收敛性与计算效率.   相似文献   

13.
We present a spectral‐element discontinuous Galerkin thermal lattice Boltzmann method for fluid–solid conjugate heat transfer applications. Using the discrete Boltzmann equation, we propose a numerical scheme for conjugate heat transfer applications on unstructured, non‐uniform grids. We employ a double‐distribution thermal lattice Boltzmann model to resolve flows with variable Prandtl (Pr) number. Based upon its finite element heritage, the spectral‐element discontinuous Galerkin discretization provides an effective means to model and investigate thermal transport in applications with complex geometries. Our solutions are represented by the tensor product basis of the one‐dimensional Legendre–Lagrange interpolation polynomials. A high‐order discretization is employed on body‐conforming hexahedral elements with Gauss–Lobatto–Legendre quadrature nodes. Thermal and hydrodynamic bounce‐back boundary conditions are imposed via the numerical flux formulation that arises because of the discontinuous Galerkin approach. As a result, our scheme does not require tedious extrapolation at the boundaries, which may cause loss of mass conservation. We compare solutions of the proposed scheme with an analytical solution for a solid–solid conjugate heat transfer problem in a 2D annulus and illustrate the capture of temperature continuities across interfaces for conductivity ratio γ > 1. We also investigate the effect of Reynolds (Re) and Grashof (Gr) number on the conjugate heat transfer between a heat‐generating solid and a surrounding fluid. Steady‐state results are presented for Re = 5?40 and Gr = 105?106. In each case, we discuss the effect of Re and Gr on the heat flux (i.e. Nusselt number Nu) at the fluid–solid interface. Our results are validated against previous studies that employ finite‐difference and continuous spectral‐element methods to solve the Navier–Stokes equations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
In many multibody system applications, the system components are made of structural elements that can have different orientations, leading to slope discontinuities. In this paper, a numerical investigation of a new procedure that can be used to model structures with slope discontinuities in the finite element absolute nodal coordinate formulation (ANCF) is presented. This procedure can be applied to model slope discontinuities in the case of commutative rotations of gradient deficient elements that are used for modeling thin beam and plate structures. An important special case to which the proposed procedure can be applied is the case of all planar gradient deficient ANCF finite elements. The use of the proposed method leads to a constant orthogonal element transformation that describes an arbitrary initial configuration. As a consequence, one obtains, in the case of large commutative rotations and large deformations, a constant mass matrix for structures which have complex geometry. The procedure used in this investigation to model slope discontinuities requires the use of the concept of the intermediate finite element coordinate system. For each finite element, a new set of gradient coordinates that define, at the discontinuity node, the element deformation with respect to the intermediate element coordinate system is introduced. These new gradient coordinates are assumed to be equal for the two finite elements at the point of intersection. That is, the change of the gradients of two elements at the intersection point from their respective intermediate initial reference configuration is assumed to be the same. This procedure leads to a set of linear algebraic equations that define the orthogonal transformation matrix for the finite element. Numerical examples are presented in order to demonstrate the use of the proposed procedure for modeling slope discontinuities.  相似文献   

15.
A great deal of progress has been made in recent years in the field of global digital image correlation (DIC), where higher-order, element-based approaches were proposed to improve the interpolation performance and to better capture the displacement fields. In this research, another higher-order, element-based DIC procedure is introduced. Instead of the displacements, the elements’ global nodal positions and nodal position-vector gradients, defined according to the absolute nodal coordinate formulation, are used as the searched parameters of the Newton–Raphson iterative procedure. For the finite elements, the planar isoparametric plates with 24 nodal degrees of freedom are employed to ensure the gradients’ continuity among the elements. As such, the presented procedure imposes no linearization on the strain measure, and therefore indicates a natural consistency with the nonlinear continuum theory. To verify the new procedure and to show its advantages, a real large deformation experiment and several numerical tests on the computer-generated images are studied for the standard, low-order, element-based digital image correlation and the presented procedure. The results show that the proposed procedure proves to be accurate and reliable for describing the rigid-body movement and simple deformations, as well as for determining the continuous finite strain field of a real specimen.  相似文献   

16.
In multibody system dynamics, the absolute nodal coordinate formulation(ANCF)uses power functions as interpolating polynomials to describe the displacement field. It can get accurate results for flexible bodies that undergo large deformation and large rotation. However, the power functions are irrational representation which cannot describe the complex shapes precisely, especially for circular and conic sections. Different from the ANCF representation,the rational absolute nodal coordinate formulation(RANCF) utilizes rational basis functions to describe geometric shapes, which allows the accurate representation of complicated displacement and deformation in dynamics modeling. In this paper, the relationships between the rational surface and volume and the RANCF finite element are provided, and the generalized transformation matrices are established correspondingly. Using these transformation matrices, a new four-node three-dimensional RANCF plate element and a new eight-node three-dimensional RANCF solid element are proposed based on the RANCF. Numerical examples are given to demonstrate the applicability of the proposed elements. It is shown that the proposed elements can depict the geometric characteristics and structure configurations precisely, and lead to better convergence in comparison with the ANCF finite elements for the dynamic analysis of flexible bodies.  相似文献   

17.
The absolute nodal coordinate formulation (ANCF) has been used in the analysis of large deformation of flexible multibody systems that encompass belt drive, rotor blade, and cable applications. As demonstrated in the literature, the ANCF finite elements are ideal for isogeometric analysis. The purpose of this investigation is to establish a relationship between the B-splines, which are widely used in the geometric modeling, and the ANCF finite elements in order to construct continuum models of large-deformation geometries. This paper proposes a simplified approach to map the B-spline surfaces into ANCF thin plate elements. Matrix representation of the mapping process is established and examined through numerical examples successfully. The matrix representation of the mapping process is used because of its suitability of computer coding and to minimize the calculation time. The error estimation is carried out by analyzing the gap between the points of each ANCF element and the corresponding points of the portion of the B-spline surface. The Hausdorff distance is used to study the effect of the number of control points, the degree of interpolation, and the knot multiplicity on the mapped geometry. It is found that cubic interpolation is recommended for optimizing the accuracy of mapping the B-spline surface to ANCF thin plate elements. It is found that thin plate element in ANCF missing a number of basis functions which considered a source of error between the two surfaces, as well as it does not allow to converting the ANCF thin plate elements model to B-spline surface. In this investigation, an application example of modeling large-size wind turbine blade with uniform structure is illustrated. The use of the continuum plate elements in modeling flexible blades is more efficient because of the relative scale between the plate thickness and its length and width and the high flexibility of its structure. The numerical results are compared with the results of ANSYS code with a good agreement. The dynamic simulation for mapped surface model shows a numerical convergence, which ensures the ability of using the proposed approach for applications of dynamics for design and computer-aided design.  相似文献   

18.
This investigation is concerned with the use of an implicit integration method with adjustable numerical damping properties in the simulation of flexible multibody systems. The flexible bodies in the system are modeled using the finite element absolute nodal coordinate formulation (ANCF), which can be used in the simulation of large deformations and rotations of flexible bodies. This formulation, when used with the general continuum mechanics theory, leads to displacement modes, such as Poisson modes, that couple the cross section deformations, and bending and extension of structural elements such as beams. While these modes can be significant in the case of large deformations, and they have no significant effect on the CPU time for very flexible bodies; in the case of thin and stiff structures, the ANCF coupled deformation modes can be associated with very high frequencies that can be a source of numerical problems when explicit integration methods are used. The implicit integration method used in this investigation is the Hilber–Hughes–Taylor method applied in the context of Index 3 differential-algebraic equations (HHT-I3). The results obtained using this integration method are compared with the results obtained using an explicit Adams-predictor-corrector method, which has no adjustable numerical damping. Numerical examples that include bodies with different degrees of flexibility are solved in order to examine the performance of the HHT-I3 implicit integration method when the finite element absolute nodal coordinate formulation is used. The results obtained in this study show that for very flexible structures there is no significant difference in accuracy and CPU time between the solutions obtained using the implicit and explicit integrators. As the stiffness increases, the effect of some ANCF coupled deformation modes becomes more significant, leading to a stiff system of equations. The resulting high frequencies are filtered out when the HHT-I3 integrator is used due to its numerical damping properties. The results of this study also show that the CPU time associated with the HHT-I3 integrator does not change significantly when the stiffness of the bodies increases, while in the case of the explicit Adams method the CPU time increases exponentially. The fundamental differences between the solution procedures used with the implicit and explicit integrations are also discussed in this paper.  相似文献   

19.
This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations.The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces.Moreover,the number of unknown variables is independent of the number of layers.The first derivatives of transverse displacements have been taken out from the inplane displacement fields,so that the C 0 shape functions are only required during its finite element implementation.Due to C 0 continuity requirements,the proposed model can be conveniently extended for implementation in commercial finite element codes.To verify the proposed theory,the fournode C 0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate.Numerical results show that following the proposed theory,simple C 0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation,which has caused difficulty for the other global higher order theories.  相似文献   

20.
This paper develops methods for interface‐capturing in multiphase flows. The main novelties of these methods are as follows: (a) multi‐component modelling that embeds interface structures into the continuity equation; (b) a new family of triangle/tetrahedron finite elements, in particular, the P1DG‐P2(linear discontinuous between elements velocity and quadratic continuous pressure); (c) an interface‐capturing scheme based on compressive control volume advection methods and high‐order finite element interpolation methods; (d) a time stepping method that allows use of relatively large time step sizes; and (e) application of anisotropic mesh adaptivity to focus the numerical resolution around the interfaces and other areas of important dynamics. This modelling approach is applied to a series of pure advection problems with interfaces as well as to the simulation of the standard computational fluid dynamics benchmark test cases of a collapsing water column under gravitational forces (in two and three dimensions) and sloshing water in a tank. Two more test cases are undertaken in order to demonstrate the many‐material and compressibility modelling capabilities of the approach. Numerical simulations are performed on coarse unstructured meshes to demonstrate the potential of the methods described here to capture complex dynamics in multiphase flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号