首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 312 毫秒
1.
范纪华  章定国  谌宏 《力学学报》2019,51(5):1455-1465
相比于浮动坐标系法, 绝对节点坐标法(absolute nodal coordinateformulation, ANCF)在处理柔性体非线性大变形问题上具有显著优势,ANCF将单元节点坐标定义在全局坐标系下,采用斜率矢量代替节点转角坐标, 具有常数质量阵,不存在科氏离心力等优点, 然而弹性力阵为非线性项,其求解将比较耗时且占用资源. 据此, 在弹性力求解方法中,引入弹性线方法(elastic line method, ELM),该方法将格林--拉格朗日应变张量定义在中心线上,采用曲率公式来定义弯曲应变, 转角公式来定义扭转应变.同时采用有限元法对三维柔性梁位移场进行离散,求解梁单元常数质量阵、广义刚度阵、广义力阵,进而得到单元的动力学方程, 通过转换矩阵得到三维梁的动力学方程.接着从理论上指出连续介质力学方法(continuum mechanics method,CMM)和弹性线方法在求解弹性力上的不同点, 并编制动力学仿真软件.最后分别采用连续介质力学方法和弹性线方法对柔性单摆以及履带式车辆的动力学问题进行仿真分析,结果表明:弹性线方法能在保证精度的前提下有效提高计算效率.   相似文献   

2.
对在平面内做大范围转动的中心刚体柔性梁系统的动力学进行了研究,建立了考虑大变形效应的系统刚柔耦合动力学模型,并进行了动力学仿真.该动力学模型不但考虑了柔性梁横向弯曲变形和纵向变形(包含轴向拉伸变形和横向弯曲变形而引起的纵向缩短项),还考虑了纵向变形对曲率的影响,称为曲率纵向变形效应.在以往的研究中,柔性梁的横向弯曲变形能往往直接使用柔性梁横向弯曲变形来表达,并没有考虑纵向变形的影响.为了考虑柔性梁纵向变形对横向弯曲变形能的影响,在浮动坐标系下使用柔性梁参数方程形式的精确曲率公式来计算柔性梁的弯曲变形能.在此基础上建立了基于浮动坐标系的考虑曲率纵向变形效应的刚耦合动力学模型.论文给出了数值仿真算例,验证了本文所建的动力学模型既能适用于柔性梁的小变形问题,又能适用于大变形问题,且较现有高次刚柔耦合动力学模型更加适用于大变形问题的处理.论文还通过与能处理柔性梁大变形问题的绝对节点坐标法的比较,验证了模型的正确性.   相似文献   

3.
相比于浮动坐标系法,绝对节点坐标法(absolute nodal coordinate formulation, ANCF)在处理柔性体非线性大变形问题上具有显著优势, ANCF将单元节点坐标定义在全局坐标系下,采用斜率矢量代替节点转角坐标,具有常数质量阵,不存在科氏离心力等优点,然而弹性力阵为非线性项,其求解将比较耗时且占用资源.据此,在弹性力求解方法中,引入弹性线方法 (elastic line method, ELM),该方法将格林–拉格朗日应变张量定义在中心线上,采用曲率公式来定义弯曲应变,转角公式来定义扭转应变.同时采用有限元法对三维柔性梁位移场进行离散,求解梁单元常数质量阵、广义刚度阵、广义力阵,进而得到单元的动力学方程,通过转换矩阵得到三维梁的动力学方程.接着从理论上指出连续介质力学方法 (continuum mechanics method, CMM)和弹性线方法在求解弹性力上的不同点,并编制动力学仿真软件.最后分别采用连续介质力学方法和弹性线方法对柔性单摆以及履带式车辆的动力学问题进行仿真分析,结果表明:弹性线方法能在保证精度的前提下有效提高计算效率.  相似文献   

4.
本文系统地研究了基于一致旋转场列式的绝对节点坐标 (ANCF consistentrotation-based formulation, ANCF/CRBF)平面梁单元的泊松闭锁问题及闭锁缓解技术.为了全面理解该类型单元的闭锁特性及明确单元的应用范围,文中首先开发了两种新的ANCF/CRBF刚性截面梁单元, 新单元在ANCF全参数梁的基础上,对梯度向量施加正交矩阵约束, 得到梯度与转角对时间导数之间的速度转换矩阵,从而引入转角参数. 新单元节点处完全消除了泊松闭锁和剪切效应,这是与传统ANCF/CRBF刚性截面梁单元的不同之处. 然后,对比分析了这三种ANCF/CRBF刚性截面梁单元泊松闭锁的特点.发现该类型单元对节点的横向梯度施加了运动学约束, 导致节点处截面不能变形,无法捕捉泊松效应, 但是单元内部能完全捕捉,这种不连续情况会加重单元整体的泊松闭锁问题. 并且发现对单元梯度约束的越多,闭锁问题越严重. 随后, 分别采用两种闭锁缓解技术, 弹性线方法和应变分解方法,进一步研究了单元的收敛性. 最终,通过多种静力学和动力学测试研究了泊松闭锁对ANCF/CRBF平面梁单元计算精度的影响及闭锁缓解技术在该类型单元上的缓解效果.   相似文献   

5.
张越  赵阳  谭春林  刘永健 《力学学报》2016,48(6):1406-1415
索粱结构在土木工程、航空航天等领域有着广泛的应用.在各类索梁动力学建模方法中,由于绝对节点坐标方法(absolute nodal coordinate formulation,ANCF)能够描述柔性体的大变形和大转动问题,因此非常适合大变形索梁结构的动力学建模.对绝对节点坐标索梁单元的应变进行分析可知,弯曲变形会引起单元内部轴向应变的不均匀分布,即单元轴向应变与弯曲应变相互耦合.这种应变耦合效应使单元产生伪应变能,导致单元刚度增大,造成单元失真.分析不同弯曲角下的单元应变及应变能可知,弯曲变形越大,单元失真越严重.通过构造等效一维杆单元重新描述轴向应变,实现了轴向应变与弯曲应变解耦.在此基础上推导广义弹性力,得到了绝对节点坐标索梁单元的应变解耦模型.对解耦前后的两种梁模型进行静力学和动力学仿真,结果表明;解耦模型消除了单元伪应变,相比原模型表现出更好的收敛性和曲率连续性,在相同单元数目下具有更高的精度.同时由于解耦模型降低了单元刚度,因此相比原模型,速度曲线中不再有高频振动.  相似文献   

6.
绝对节点坐标法(Absolute Nodal Coordinate Formulation,ANCF)具有不存在小变形、小转动假设,质量矩阵为常数矩阵等优点,但由于弯曲应变与轴向应变不一致,带来剪切闭锁问题.本文基于小变形假设,利用ANCF方法得到两节点梁的刚度矩阵,进而将该方法推广到多节点梁,解得多节点梁的刚度矩阵.利用Maple软件编制求解程序,求解矩形截面梁在无约束条件下的固有频率及外伸梁的末端静挠度.通过与ABAQUS仿真结果及解析解对比发现:当梁上节点数较少时,用ANCF方法得到的结果相较于仿真结果、解析解较为"刚硬","剪切闭锁"现象较为严重.随着节点数的增加,ANCF方法得到的计算结果与仿真结果、解析解趋于一致.当梁上节点数增加到31时,对于自由模态的前4阶固有频率,ANCF方法的求解结果与解析解之间的误差均小于3‰;对端部带有集中质量的外伸梁的末端静挠度,ANCF方法的求解结果与解析解之间的误差均小于0.5‰,剪切闭锁问题得到有效解决.  相似文献   

7.
对于大转动、大变形柔性体的刚柔耦合动力学问题,基于李群SE(3)局部标架(local frame formulation, LFF)的建模方法能够规避刚体运动带来的几何非线性问题,离散数值模型中广义质量矩阵与切线刚度矩阵满足刚体变换的不变性,可明显地提高柔性多体系统动力学问题的计算效率. 有限元方法中,闭锁问题是导致单元收敛性能低下的主要原因, 例如梁单元的剪切以及泊松闭锁.多变量变分原理是缓解梁、板/壳单元闭锁的有效手段. 该方法不仅离散位移场,同时离散应力场或应变场, 可提高应力与应变的计算精度. 本文基于上述局部标架,研究几类梁单元的闭锁处理方法, 包括几何精确梁(geometrically exact beam formulation, GEBF)与绝对节点坐标(absolute nodal coordinate formulation, ANCF)梁单元. 其中, 采用Hu-Washizu三场变分原理缓解几何精确梁单元中的剪切闭锁,采用应变分解法缓解基于局部标架的ANCF全参数梁单元中的泊松闭锁. 数值算例表明,局部标架的梁单元在描述高转速或大变形柔性多体系统时,可消除刚体运动带来的几何非线性, 极大地减少系统质量矩阵和刚度矩阵的更新次数.缓解闭锁后的几类局部标架梁单元收敛性均得到了明显提升.   相似文献   

8.
胡景晨  王天舒 《力学学报》2016,48(5):1172-1183
相比于传统的浮动坐标法,绝对节点坐标法(absolute nodal coordinate formulation,ANCF)在处理柔性体非线性大变形问题上具有显著优势,但是对于ANCF的求解目前主要依据拉格朗日方程等分析力学原理建立微分代数方程(differential algebraic equation,DAE)进行,其算法复杂度为O(n2)或O(n3)(n为系统自由度),且求解过程存在位置或速度的违约问题.据此,研究了一种O(n)算法复杂度的递推绝对节点坐标法(recursive absolute nodal coordinate formulation,RANCF).该方法采用ANCF描述大变形柔性体,借鉴铰接体递推算法(articulatedbody algorithm,ABA)思路建立多柔体系统逐单元的运动学和动力学递推关系,得到微分形式的系统动力学方程(ordinary differential equation,ODE).在ODE方程中,系统广义质量阵为三对角块矩阵,通过恰当的矩阵处理,可以得到逐单元求解该方程的递推算法.在此基础上,给出了RANCF算法的详细流程,并对流程中每个步骤进行了细致的算法效率分析,证明了RANCF是算法复杂度为O(n)的高效算法.RANCF方法保留了ANCF对大转动、大变形多柔体系统精确计算的优点,同时极大地提升了算法效率,特别在处理高自由度复杂多柔体系统中具有显著优势.并且该方法采用ODE求解,无DAE的违约问题,因此具有更高的算法精度.最后,在算例部分,通过MSC.ADAMS仿真软件、能量守恒测试、算法复杂度曲线对RANCF的正确性、计算精度和计算效率进行了验证.  相似文献   

9.
根据柔索应变与位移的非线性几何关系以及自重作用和温度影响下的平衡方程,采用欧拉描述的坐标系精确地求得了各点的位移和张力的解析解。对柔性索网结构建立的非线性代数方程组应用改进的Powell混合算法编制的高精度DNEQNF程序直接进行求解,给出了平面索网变形分析的数值算例并与相关文献进行了比较。算例结果表明与其它方法相比,本文方法对求解柔索的非线性变形问题求解简单,便于应用。  相似文献   

10.
为了简便有效地解决板壳结构的大变形问题,本文针对八节点相对自由度壳单元进行研究。该单元的位移场由壳的中面节点位移和上表面节点的相对位移组成,不带有转动变量。所有的研究都是基于完全的三维位移、应力、应变场。采用拟应变法,对应变场另行假设,能够改善该单元在大变形情况下的计算精度。通过引入Wilson非协调模式,构造了大变形情况下的拟应变场表达式,给出了该单元用于解决非线性动力分析问题的有限元求解方程。通过算例表明,本文针对相对自由度壳单元提出的方法及推导的公式,能够解决冲击动力问题中的大变形问题。  相似文献   

11.
Under the frame of multibody dynamics, the contact dynamics of elasto-plastic spatial thin beams is numerically studied by using the spatial thin beam elements of absolute nodal coordinate formulation (ANCF). The inter-nal force of the elasto-plastic spatial thin beam element is derived under the assumption that the plastic strain of the beam element depends only on its longitudinal deformation. A new body-fixed local coordinate system is introduced into the spatial thin beam element of ANCF for efficient con-tact detection in the contact dynamics simulation. The linear isotropic hardening constitutive law is used to describe the elasto-plastic deformation of beam material, and the classical return mapping algorithm is adopted to evaluate the plastic strains. A multi-zone contact approach of thin beams previ-ously proposed by the authors is also introduced to detect the multiple contact zones of beams accurately, and the penalty method is used to compute the normal contact force of thin beams in contact. Four numerical examples are given to demonstrate the applicability and effectiveness of the pro-posed elasto-plastic spatial thin beam element of ANCF for flexible multibody system dynamics.  相似文献   

12.
Dynamic modeling for incompressible hyperelastic materials with large deformation is an important issue in biomimetic applications. The previously proposed lower-order fully parameterized absolute nodal coordinate formulation (ANCF) beam element employs cubic interpolation in the longitudinal direction and linear interpolation in the transverse direction, whereas it cannot accurately describe the large bending deformation. On this account, a novel modeling method for studying the dynamic behavior of nonlinear materials is proposed in this paper. In this formulation, a higher-order beam element characterized by quadratic interpolation in the transverse directions is used in this investigation. Based on the Yeoh model and volumetric energy penalty function, the nonlinear elastic force matrices are derived within the ANCF framework. The feasibility and availability of the Yeoh model are verified through static experiment of nonlinear incompressible materials. Furthermore, dynamic simulation of a silicone cantilever beam under the gravity force is implemented to validate the superiority of the higher-order beam element. The simulation results obtained based on the Yeoh model by employing three different ANCF beam elements are compared with the result achieved from a commercial finite element package as the reference result. It is found that the results acquired utilizing a higher-order beam element are in good agreement with the reference results, while the results obtained using a lower-order beam element are different from the reference results. In addition, the stiffening problem caused by volumetric locking can be resolved effectively by applying a higher-order beam element. It is concluded that the proposed higher-order beam element formulation has satisfying accuracy in simulating dynamic motion process of the silicone beam.  相似文献   

13.
In this investigation, numerical convergence of finite element solutions obtained using the B-spline approach and the absolute nodal coordinate formulation (ANCF) is discussed. Furthermore, equivalence of the two formulations with different orders of polynomials and degrees of continuity is demonstrated by several numerical examples. The degree of continuity can be easily controlled in B-spline elements by changing knot multiplicities, while continuity conditions associated with higher order derivatives need to be imposed to achieve C 2 and higher continuities in ANCF elements. In order to compare element performances of the third and quartic B-spline and ANCF elements, the three-node quartic ANCF beam element is developed. It is demonstrated in several numerical examples that use of B-spline and ANCF elements with same orders and continuities leads to identical results. Furthermore, effects of polynomial orders and continuities on the accuracy and numerical convergence are demonstrated.  相似文献   

14.
Based on previous studies, a new spatial curved slender-beam finite element and a new cylindrical shell finite element are proposed in the frame of gradient-deficient Absolute Nodal Coordinate Formulation (ANCF). The strain energy of the beam element is derived by using the definition of the Green?CLagrange strain tensor in continuum mechanics so that the assumption on small strain can be relaxed. By using the differential geometry and the continuum mechanics, the angle between two base vectors of a defined local coordinate frame of the cylindrical shell element is introduced into the strain energy formulations. Therefore, the new shell element can be used to model parallelogram shells. The analytical formulations of elastic forces and their Jacobian for the above two finite elements of gradient-deficient ANCF are also derived via the skills of tensor analysis. The generalized-alpha method is used to solve the huge set of system equations. Finally, four case studies including both static and dynamic problems are given to validate the proposed beam and cylindrical shell elements of gradient-deficient ANCF.  相似文献   

15.
It is demonstrated that the problem of elasto-plastic finite deformation is governed by a quasi-linear model irrespective of deformation magnitude. This feature follows from the adoption of a rate viewpoint toward finite deformation analysis in an Eulerian reference frame. Objectivity of the formulation is preserved by introduction of a frame-invariant stress rate.Equations for piece-wise linear incremental finite element analysis are developed by application of the Galerkin method to the instantaneously linear governing differential equations of the quasi-linear model. Numerical solution capability has been established for problems of plane strain and plane stress. The accuracy of the numerical analysis is demonstrated by consideration of a number of problems of homogeneous finite deformation admiting comparative analytic solution. It is shown that accurate, objective numerical solutions can be obtained for problems involving dimensional changes of an order of magnitude and rotations of a full radian.  相似文献   

16.
By considering the characteristics of deformation of rotationally periodic structures under rotationally periodic loads, the periodic structure is divided into some identical substructures in this study. The degrees-of-freedom (DOFs) of joint nodes between the neighboring substructures are classified as master and slave ones. The stress and strain conditions of the whole structure are obtained by solving the elastic static equations for only one substructure by introducing the displacement constraints between master and slave DOFs. The complex constraint method is used to get the bifurcation buckling load and mode for the whole rotationally periodic structure by solving the eigenvalue problem for only one substructure without introducing any additional approximation. The finite element (FE) formulation of shell element of relative degrees of freedom (SERDF) in the buckling analysis is derived. Different measures of tackling internal degrees of freedom for different kinds of buckling problems and different stages of numerical analysis are presented. Some numerical examples are given to illustrate the high efficiency and validity of this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号