首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 318 毫秒
1.
By using a pump recycling configuration, we presented a high efficient diode-pumped Tm:YLF laser with a volume Bragg grating. When the incident pump power was 33.1 W, a maximum output power of 11.1 W at 1907.8 nm with full width at half maximum of 0.6 nm was obtained. The slope efficiency with respect to the incident pump power was 44.8%, and the optical-to-optical efficiency was 33.5%. In addition, the VBG-based Tm:YLF laser was employed as a pumping source of Ho:YAG laser, the maximum output power of 4.7 W with a slope efficiency of 67.0% was obtained, corresponding to Tm-to-Ho conversion efficiency of 51.6%.  相似文献   

2.
A high-power, continuous-wave 3.5% Tm3+ doped LiYF4 (Tm:YLF) laser has been developed. Using two Tm:YLF rods in a single cavity, 55 W of laser output at 1910 nm was obtained with a slope efficiency of 49%. The M2 factor was found to be <3. With a single Tm:YLF rod, a maximum laser power of 30 W was obtained with a slope efficiency of 50%. The laser was tuned to the peak absorption wavelength of Ho:YAG of 1907.5 nm by an intracavity quartz etalon with an output power loss < 1 W. PACS 42.55.-f; 42.55.Xi; 42.60.Pk  相似文献   

3.
Schellhorn M  Hirth A  Kieleck C 《Optics letters》2003,28(20):1933-1935
We report a compact Ho:YAG laser that is intracavity pumped by a diode-pumped Tm:YLF laser. Both lasers exhibit pulse mode behavior. Operating both crystals at room temperature (25 degrees C), we obtained 1.6 W of average output at 2.09 microm from the Ho:YAG laser for 15.4 W of diode power incident upon the Tm:YLF rod and a slope efficiency of 21%.  相似文献   

4.
High-efficiency continuous-wave (CW) Tm:YLF laser by the dual-end-pumping configuration is presented. Under the total input pump power of 24.0 W, the highest output power reaches 9.8 W in the wavelength range of 1910 - 1926 nm by use of 10% output coupling, corresponding to optical conversion efficiency of 40.9% and slope efficiency of 51.4%. The free-running laser spectrum of Tm:YLF is measured.  相似文献   

5.
激光二极管抽运(Tm,Ho):YLF微片激光器的实验研究   总被引:4,自引:0,他引:4  
从理论上分析了准三能级(Tm,Ho):YLF晶体的增益与温度关系,晶体温度的降低和长度的缩短有利于减小重吸收损耗对激光器运行性能的影响。在室温条件下,用2.7w波长为792nm激光二极管端面抽运Tm(原子数分数0.06),Ho(原子数分数0.004.):YLF微片激光器,阈值抽运功率为450W,当入射到晶体内的激光二极管功率为1.88W时,2μm激光最大输出功率为328mW,斜率效率为22.5%,光—光转换效率达17.4%。为达到激光最佳运行条件,还探讨了激光二极管波长,抽运光偏振方向以及晶体温度对Tm,Ho激光器性能的影响。  相似文献   

6.
In this paper, we report a high power cryogenic cooling Tm(6 at.-%),Ho(0.5 at.-%):YLF laser end-pumped by a 19-fiber-coupled-diodes module with the central wavelength of 792 nm at 20°. The highest continuouswave power of 3.6 W at 2.051 μm is attained under pumping power of 13.6 W, corresponding to opticaloptical conversion efficiency of 26%, and the slope efficiency is larger than 30%. The threshold power is only about 0.16 W because of the long lifetime, large effective emission cross section, and low re-absorption in Tm,Ho:YLF crystal.  相似文献   

7.
L. Huang  M. Gong  L. Ke  J. Liu 《Laser Physics》2009,19(7):1395-1398
A new compact high efficient diode-double-passing-pumped Tm:YLF laser at room temperature is presented. Using a crystal of 3 mm × 3 mm × 12 mm 4% doping Tm:YLF and double-end-double-passing pumping cavity structure without complex optical splitter pumping system, 5.6 W CW 1907.6 nm laser is obtained at 26.2 W 792 nm pumping laser. The slope efficiency is as high as 37.8% and the spectrum width is 2 nm. The relationship between cavity length and output laser is also analyzed. Experiments verify that the highest energy and convertion efficiency can be reached by optimizing the oscillator cavity length. Finally, we used this Tm:YLF laser to pump Ho:YAG crystal at room temperature and achieved 1.65 W 2.1 μm output laser with slope efficiency 67%.  相似文献   

8.
We design a continuous-wave Tm:YLF laser with a composite slab crystal end-pumped by two fiber-coupled laser diodes at room temperature. We achieve a maximum continuous wave output power of 105 W for the bonded slab Tm:YLF laser; the corresponding slope efficiency is 47.7% and the optical-to-optical conversion efficiency is 42.0% with respect to the incident pump power. The laser operated at 1,907.5 nm with a beam quality factor of M2 3.2 at the highest output power.  相似文献   

9.
Diode-end-pumped continuous-wave(CW) Tm:YAP and Tm:YLF slab lasers are demonstrated. The a-cut Tm:YAP and Tm:YLF slabs with doping concentrations of 4 at.-% and 3.5 at.-%,respectively,are pumped by fast-axis collimated laser diodes at room temperature. The maximum CW output powers of 72 and 50.2 W are obtained from Tm:YAP and Tm:YLF,respectively,while the pump power is 220 W,corresponding to the slope efficiencies of 37.9% and 26.6%,respectively.  相似文献   

10.
激光二极管纵向抽运(Tm,Ho):YLF激光器的研究   总被引:2,自引:0,他引:2  
对激光二极管端面抽运(Tm,Ho):YLF固体激光器的激光特性进行了研究。根据激光二极管抽运准三能级系统的特性,详尽地分析了能量在Tm^3 离子和Ho^3 离子之间的传递过程,给出了(Tm,Ho):YLF激光器准三能级的速率方程,对上转换及激光下能级粒子再吸收对激光二极管抽运(Tm,Ho):YLF激光器运转的影响进行了理论分析,得出了(Tm,Ho):YLF激光器的阈值抽运功率和斜率效率的解析表达式。同时对(Tm,Ho):YLF微片激光器的激光特性进行了实验研究,当保持晶体温度为19℃时,阈值抽运功率为425mW,斜率效率为22.5%,最大光—光转换效率为17.4%,并且在将晶体保持在四个不同的温度下,给出了激光输出功率随抽运功率变化的实验结果。将理论与实验结果进行比较,发现吻合得比较好。  相似文献   

11.
二极管泵浦的2 μm高重复频率脉冲固体激光器   总被引:1,自引:0,他引:1       下载免费PDF全文
 报道了连续二极管端面泵浦2 μm高重复频率Tm,Ho:YLF激光器的实验研究结果。792 nm光纤耦合激光二极管作泵浦源,泵浦液氮制冷的Tm,Ho:YLF晶体。动态运转时,平均输出功率达到4 W,相应的能量抽取效率大于85%。采用声光调Q方式,重复频率1~50 kHz可调,10 kHz时,峰值功率达到12 kW,最小脉宽为32 ns。同时,还对二极管泵浦2 μm激光器设计中的各种因素进行了分析。  相似文献   

12.
Performance of a liquid-nitrogen-cooled CW Tm, Ho:YLF laser   总被引:2,自引:0,他引:2  
A liquid-nitrogen-cooled Tm, Ho:YLF laser is constructed with a 10-mm-long Tm(6%) and Ho(0.5%) co-doped yttrium lithium fluoride crystal pumped by a laser diode operating at 792 nm. The laser outputpower is improved by cooling the Tm, Ho:YLF crystal from 300 to 77 K. When the crystal is kept at 77K, the laser threshold pump power is 230 mW, the slope efficiency is 27.4%, and the maximum optical-to-optical efficiency is 19.9%. At the same time, the relation between the input power and the output powerat different temperatures is obtained.  相似文献   

13.
A 2% Tm3+-doped LiYF4(Tm:YLF) slab is double-end-pumped by two laser diode stacks. The pumped volume has a rectangular cross section. The Tm:YLF laser produced 148 W of continuos-wave output at 1912 nm in a beam with M x 2≈199 and M y 2≈1.7 for 554 W of incident pump power. The slope efficiency with respect to the incident pump power was 32.6%, and the optical-to-optical efficiency was 26.7%.  相似文献   

14.
We present the room-temperature continuous-wave Ho:LSO laser single-pass-end-pumped by a diode-pumped Tm:YLF laser at 1.91 μm in this paper. Under different output couplers of 2.4, 5.0, and 14.0%, the laser output power and output spectrum of Ho:LSO laser operating at room temperature are investigated. The output wavelength of Ho:LSO laser was centered at 2106.5 nm with linewidth (FWHM) of about 3.2 nm. With T = 5.0%, the maximum output power of 2.4 W was achieved under the absorbed pump power of 11.1 W, corresponding to a slope efficiency of 38.0%.  相似文献   

15.
Continuous-wave (CW) and Q-switched operation of a room-temperature Ho:LuAG laser was resonantly double-end-pumped by a diode-pumped Tm:YLF laser at 1.91 μm. The CW Ho: LuAG laser generated 24.5 W of linearly output at 2094.4 nm with beam quality factor of M 2 = 1.11 ± 0.02 for an absorbed pump power of 44.0 W, corresponding to optical-to-optical conversion efficiency of 55.7% and slope efficiency of 60.5%. Under Q-switched operation, a maximum output power of 24.1 W with a slope efficiency of 58.1% at 12 kHz was obtained. Also, the minimum pulse width of 32 ns was achieved, corresponding to the peak power was 37.7 kW.  相似文献   

16.
激光二极管抽运(Tm,Ho)∶YLF激光器光谱特性实验分析   总被引:2,自引:0,他引:2  
Ho∶YLF晶体的5I7和5I8斯塔克能级分裂数较多,形成2047~2070nm宽的增益谱带,对于可调谐2μm激光及宽带激光放大器研究具有重要意义。理论上分析了(Tm,Ho)∶YLF晶体的能级结构,并对晶体掺杂浓度和长度进行了优化。实验研究了激光二极管抽运微片Tm(原子数分数0.06),Ho(原子数分数0.004)∶YLF激光谱线可调谐特性,调谐范围2.0656~2.0671μm。利用(Tm,Ho)∶YLF晶体的宽增益谱特性,将其作为激光二极管抽运激光放大器,成功地将2.048μm(Tm,Ho)∶GdVO4激光功率放大了2.5倍。实验上测量了(Tm,Ho)∶YLF晶体在强抽运条件下480~492nm及530~550nm可见波段的上转换蓝绿光荧光谱。  相似文献   

17.
This paper presents CW and acoustic-optical Q-switched Tm,Ho:YLF laser performance in a laser-diode end-pumping figure-eight ring resonator structure at 77 K. Under CW operation, different transmission of output couplers and different cavity length were used to achieve best characteristics of the laser. The maximum power of 1.85 W is achieved with the threshold of 2.09 W, slope efficiency of 28.14% and optical-to-optical efficiency of 20.3% on the condition of 1 m cavity length and 18% transmission. Under pump power of 4 W, laser characteristics under Q-switched operation with different pulse repeat frequency was investigated. Maximum energy of 5.86 mJ is achieved with pulse width of 171.2 ns, peak power of 34.2 kW and dynamic-static ratio about Q-switch laser of 0.62 at pulse repeat frequency 70 Hz.  相似文献   

18.
光纤耦合二极管端泵2 μm CW双掺)Tm,Ho∶GdVO4激光器   总被引:2,自引:2,他引:0  
同YLF和YAG 基质相比,在Tm-Ho∶GdVO4晶体中Tm3+离子在800 nm附近有非常强的和宽的吸收带,所以该晶体非常适合商品化的GaAlAs激光二极管泵浦.在液氮制冷晶体条件下,利用光纤耦合激光二极管及消色差光学耦合系统端面泵浦双掺5%Tm,0.5%Ho∶GdVO4晶体,在泵浦功率14 W、泵浦波长794 nm时,实现了2.048 μm激光输出,连续运转输出功率3.6 W,相应的光光转换效率为25.7%,斜率效率26.6%.相对于吸收的泵浦功率,光光转换效率为35%.由于Tm3+离子间的交叉弛豫效应,泵浦量子效率达到1.3.  相似文献   

19.
We demonstrate a narrow linewidth Tm:YLF laser with a volume Bragg grating (VBG) that was pumped by an equidirectional-polarization fiber-coupled laser diode using a dual-end-pumping configuration. For an optimized output coupler with a radius of curvature of 150 mm and transmission of 15% at a wavelength of 1.91 μm, the maximum output power was 15.6 W for an absorbed pump power of 51.7 W at 1,907.93 nm, and the output had a narrow linewidth of 0.22 nm. This corresponds to an optical-to-optical conversion efficiency of 30.2% and the slope efficiency was 36.7%.  相似文献   

20.
We present a theoretical and experimental analysis of a diode-pumped single frequency Tm,Ho:YLF laser. A new model for a diode-pumped Tm,Ho:YLF quasi-three-level laser is described. The influence of energy-transfer up-conversion (ETU) and ground-state re-absorption (GSA) has been taken into account. When the incident pump power is 2.8 W, a maximum single frequency output power of 118 mW is obtained from the Tm,Ho:YLF laser at room temperature. The line narrowing elements used are two solid etalons. The single frequency laser can be used as a seed laser for either a larger oscillator or an amplifier. The theoretical results are in good agreement with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号