首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of transverse Zeeman slower composed of an array of compactdiscrete neodymium magnets is described. A simple and precisemodel of such a slower based on magnetic dipoles is developed.The design of such a slower for Sr atoms is presented.The slower needs no high currents or water cooling and the spatial distribution of itsmagnetic field can be adjusted in situ. Such a slower would be ideal fortransportable optical atomic clocks and their future applicationsin space physics.  相似文献   

2.
We report the realization of ytterbium magneto-optical trap (MOT) operating on the dipole-allowed ^1S0 - ^1P1 transition at 398.9nm. The MOT is loaded by a slowed atomic beam produced by a Zeeman slower. All seven stable isotopes of Yb atoms could be trapped separately at different laser detuning values. Over 10^7 174 Yb atoms are collected in the MOT, whereas the atom number of fermionic isotope ^171Yb is roughly 2.3 × 10^6 due to a lower abundance. Without the Zeeman slower the trapped atom numbers are one order of magnitude lower. Both the even and odd isotopes are recognized as excellent candidates of optical clock transition, so the cooling and trapping of ytterbium atoms by the blue MOT is an important step for building an optical clock.  相似文献   

3.
4.
We report on the first successful loading of a magneto-optical trap (MOT) with metastable He atoms from a Stark-slower. Thereby, deceleration of the atoms relies on laser-atom interaction in an inhomogeneous electric field. We show that the results obtained are comparable with early results from other groups achieved with a Zeeman slower. The Stark slower, which is able to fully control the final velocity of the atomic He beam, is the first step in achieving complete spin independent kinematic control based solely on electric fields. Received 2 October 2002 / Received in final form 20 January 2003 Published online 29 April 2003 RID="a" ID="a"e-mail: eichmann@mbi-berlin.de  相似文献   

5.
We used microwave radiation to evaporatively cool a mixture of of 133Cs and 87Rb atoms in a magnetic trap. A mixture composed of an equal number (around 104) of Rb and Cs atoms in their doubly polarized states at ultracold temperatures was prepared. We also used microwaves to selectively evaporate atoms in different Zeeman states.  相似文献   

6.
A new method for the measurement of motional frequencies and amplitudes of stored ions in a radio-frequency trap is presented. Ions oscillating in the trap potential and additionally subjected to a small magnetic field, undergo sublevel transitions between adjacent Zeeman states when their motional frequency is identical with the Larmor frequency in the applied magnetic field. These transitions can be sensitively detected by means of an optical pumping scheme. As they are related to a coherent superposition of adjacent states and originate from the inherent motion of the ions in a slightly inhomogeneous magnetic field, this phenomenon is termed self-induced Zeeman coherence.  相似文献   

7.
We propose a new method to cool gaseous samples of neutral atoms. The gas is confined in a non dissipative optical trap in the presence of an homogeneous magnetic field. The method accumulates atoms in the m F =0 Zeeman sub-level. Cooling occurs via collisions that produce atoms in states. Thanks to the second order Zeeman effect kinetic energy is transformed into internal energy and recycling of atoms is ensured by optical pumping. This method may allow quantum degeneracy to be reached by purely optical means. Received 10 May 2000  相似文献   

8.
张晓航  徐信业 《中国物理 B》2017,26(5):53701-053701
We develop a permanent-magnet Zeeman slower with adjustable magnets along the longitudinal and radial directions.Produced by four arrays of cylindrical magnets, the longitudinal magnetic field in the slower is tunable if relevant parameters vary, for example, laser detuning or intensity. The proposed Zeeman slower can be reconfigured for Sr atoms. Additionally,we demonstrate that the residual magnetic field produced by the permanent magnets in the magneto-optical trap region can be as small as 0.5 Gs.  相似文献   

9.
We investigated the optical pumping of the Zeeman components of rubidium atoms, in the presence of the external magnetic field ranging from the geomagnetic up to 130 Gauss. Using the saturated absorption spectroscopy with linearly polarized pump and probe laser beams, the rubidium Doppler-free spectra at different magnetic field strengths were measured. The dips (negative intensity signals) in the saturated absorption spectra of the 87Rb hyperfine transition lines were observed. They come as a result of the alignment process induced by the incoherent population transfer due to the hyperfine optical pumping. By inspection of the dips for different magnetic field strengths we were able to conclude about the dynamics of the alignment process in the external magnetic field. Present work is a part of the investigations concerning the influence of the magnetic field on the velocity selective optical pumping of the rubidium atoms induced by femtosecond frequency comb [D. Aumiler, T. Ban, H. Skenderovi?, G. Pichler, Phys. Rev. Lett. 95 (2005) 233001; T. Ban, D. Aumiler, H. Skenderovi?, G. Pichler, Phys. Rev. A 73 (2006) 043407].  相似文献   

10.
A fast packet of cold atoms is coupled into a magnetic guide and subsequently slowed down by reflection on a magnetic potential barrier (`mirror') moving along the guide. A detailed characterization of the resulting decelerated packet is performed. We show also how this technique can be used to generate a continuous and intense flux of slow, magnetically guided atoms.  相似文献   

11.
We study the performances of Raman velocimetry applied to laser-cooled, spin-polarized, cesium atoms. Atoms are optically pumped into the F = 4, m4=0 ground-state Zeeman sublevel, which is insensitive to magnetic perturbations. High resolution Raman stimulated spectroscopy is shown to produce Fourier-limited lines, allowing, in realistic experimental conditions, atomic velocity selection to one-fiftieth of a recoil velocity.  相似文献   

12.
We have demonstrated that a cobalt single crystal can be used to make a remarkably smooth retro-reflector for cold paramagnetic atoms. The crystal is cut so that its surface lies in the (0001) plane and the atoms are reflected by the magnetic field above the surface due to the self-organized pattern of magnetic domains in the material. We find that the reflectivity for suitably polarized atoms exceeds 90% and may well be unity. We use the angular spread of a reflected atom cloud to measure the roughness of the mirror. We find that the angular variation of the equivalent hard reflecting surface is (3.1±0.3°)rms for atoms dropped onto the mirror from a height of 2 cm. Received: 29 November 1999 / Revised version: 24 February 2000 / Published online: 5 April 2000  相似文献   

13.
We transfer cold ^87 Rb atoms from a vapour cell chamber to a spatially separated UHV magneto-optical trap (MOT) with the assistance of a red-detuned optical guiding beam and a normal push beam. Efficient optical guiding of the cold atoms is observed within a small detuning window. A pulsed optical guiding beam enhances the transfer efficiency and hence allows us to collect more atoms in UHV MOT in a shorter time, which is favourable for our experiment of achieving Bose-Einstein condensates (BEC). Besides the easy operation, another advantage of this optical guiding technique is also demonstrated such that slower atomic beams may be efficiently transferred along horizontal direction. This study is a direct application of the optical guiding technique as a powerful tool.  相似文献   

14.
We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45° with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope 174Yb and the fermionic isotope 171Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.  相似文献   

15.
Possibilities of trapping ground state atoms in static fields are studied. It is shown that it is impossible to trap ground state particles at rest using arbitrary combinations of electric, magnetic, and gravitational fields, a result which is a considerable generalization of Wing's theorem. Similarly, it is impossible to make a thin lens for ground state atoms using static fields. Confinement of ground state particles in dynamic equilibrium can be achieved. Axially symmetric storage rings with electric or magnetic fields are possible and should be experimentally feasible. Such storage rings have the important advantage that ground state particles can be confined, hence loss of atoms by two-body collisions is avoided.  相似文献   

16.
A significant enhancement in the number of cold atoms in an atomic-beam-loaded magneto-optical trap (MOT) for metastable krypton atoms is observed when hollow laser beams are used in a Zeeman slower instead of a Gaussian laser beam. In the Zeeman slower setup, a combination of two hollow laser beams, i.e., a variable-diameter hollow beam generated using a pair of axicon lenses superimposed on a fixed-diameter hollow beam, has been used to reduce the longitudinal velocity of the atoms in the atomic beam below the capture speed of the MOT. The observed enhancement in the number of atoms in the MOT is attributed to reduced destruction of the atom cloud in the MOT and increased cooling of the off-axis atoms in the atomic beam, resulting from the use of hollow beams in the Zeeman slower.  相似文献   

17.
光钟物理系统的小型化是制约可搬运光钟及空间冷原子光钟发展的重要因素.主要介绍了小型化锶原子光钟物理系统的研制实验.采用真空腔内置反亥姆霍兹线圈,构建一个小电流、低功耗及小体积的磁光阱.实验中测得真空线圈通电电流仅为2 A时,磁光阱中心区域轴向磁场梯度可达到43 Gs/cm,完全满足锶原子多普勒冷却与俘获对磁场梯度的要求.目前已经成功将锶原子光钟物理系统体积缩小至60 cm×20 cm×15 cm,约为实验室原锶光钟物理系统体积的1/10,并且实现了锶原子的一级冷却,测得俘获区冷原子团的直径为1.5 mm,温度约为10.6 mK.锶同位素~(88)Sr和~(87)Sr的冷原子数目分别为1.6×10~6和1.5×10~5.重抽运激光707和679 nm的加入,消除了冷原子在~3P_2和~3P_0两能态上的堆积,最终可将冷原子数目提高5倍以上.  相似文献   

18.
研究了用于锶原子光晶格光钟原子冷却的塞曼减速器,应用增添补偿线圈的方法可以延长减速器的有效减速距离和增大减速器末端的磁场梯度,进而增加一级冷却俘获锶原子的数目,理论分析采用该方法实现的塞曼减速器较使用单一线圈塞曼减速器可以增加31.17%的俘获原子数目;飞行时间法测量了减速前后原子束中原子的速度分布,原子的最可几速度由380m/s降为43m/s,分布线宽相应变窄。荧光法测量俘获原子数目表明在相同实验条件下,应用补偿线圈后磁光阱俘获原子数目从1.26×106提高到1.81×106,增加30.4%。  相似文献   

19.
We employ a sample of cold 87Rb atoms in a magneto-optical trap to study the impulse responses and spatial characters of backward conjugate waves in a four-wave mixing process. We measure the slow and superluminal group velocities of backward conjugate waves, and find the sensitive variation of the spatial mode of backward waves with the probe-pump detuning and the dependence of the reflectance on the magnetic field, while the trapping magnetic field exists.  相似文献   

20.
Faraday rotation of a laser beam and emission spectroscopy to resolve Zeeman splitting provide information about the plasma magnetic field, integrated along the line of sight. Information about the local magnetic field strength can be obtained using a dye laser tuned off the center of an atomic or ionic transition by an amount δλz. If the absorption linewidth of the transition probed is less than the Zeeman splitting, only those atoms/ions residing in a magnetic field where the Zeeman splitting is δλz will resonantly absorb energy from the laser and fluoresce. The feasibility of this magnetic field contour technique was studied in a low-pressure neon discharge. A conductor insulated from the discharge generated a large magnetic field in the discharge free of the Stark broadening effects associated with large plasma currents. The laser-induced fluorescence (LIF) intensity profile measured along the laser beams had peaks at those spatial locations where local magnetic fields, inferred from the conductor current, agreed with the Zeeman shifted wavelength of the laser  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号