首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A transverse Zeeman slower composed of an array of compact discrete neodymium magnets is considered. A simple and precise model of such a slower based on magnetic dipoles is developed. The theory of a general Zeeman slower is modified to include spatial nonuniformity of the slowing laser beam intensity due to its convergence and absorption by slowed atoms. The slower needs no high currents or water cooling and the spatial distribution of its magnetic field can be adjusted. In addition the slower provides a possibility to cool the slowed atoms transversally along the whole length of the slower. Such a slower would be ideal for transportable optical atomic clocks and their future applications in space physics.  相似文献   

2.
A new type of transverse Zeeman slower composed of an array of compactdiscrete neodymium magnets is described. A simple and precisemodel of such a slower based on magnetic dipoles is developed.The design of such a slower for Sr atoms is presented.The slower needs no high currents or water cooling and the spatial distribution of itsmagnetic field can be adjusted in situ. Such a slower would be ideal fortransportable optical atomic clocks and their future applicationsin space physics.  相似文献   

3.
We build a Zeeman slower with consecutive coils and use it to load an Yb magneto-optical trap(MOTs).Cooling efficiency is measured by the fluorescence intensity of the atomic cloud trapped by the MOT.An optimized magnetic field profile can acquire the maximum cooling efficiency,corresponding to a good compromise between the smaller magnetic field mismatch and the high capture velocity.Our studies provide useful information on how the performance of the Zeeman slower can be improved.  相似文献   

4.
Motivated by a recent magnetization reversal experiment on a TbFeCo thin film, we study a topological excitation in the anisotropic nonlinear sigma model together with the Zeeman and magnetic dipole-dipole interactions. Dipole-dipole interactions turn a ferromagnet into a frustrated spin system, which allows a nontrivial spin texture such as a giant Skyrmion. We derive an analytic formula for the Skyrmion radius. The radius is controllable by the external magnetic field. It is intriguing that a Skyrmion may have already been observed as a magnetic domain. A salient feature is that a single Skyrmion can be created or destroyed experimentally. An analysis is made also on Skyrmions in chiral magnets.  相似文献   

5.
研究了用于锶原子光晶格光钟原子冷却的塞曼减速器,应用增添补偿线圈的方法可以延长减速器的有效减速距离和增大减速器末端的磁场梯度,进而增加一级冷却俘获锶原子的数目,理论分析采用该方法实现的塞曼减速器较使用单一线圈塞曼减速器可以增加31.17%的俘获原子数目;飞行时间法测量了减速前后原子束中原子的速度分布,原子的最可几速度由380m/s降为43m/s,分布线宽相应变窄。荧光法测量俘获原子数目表明在相同实验条件下,应用补偿线圈后磁光阱俘获原子数目从1.26×106提高到1.81×106,增加30.4%。  相似文献   

6.
Longitudinal Zeeman slowers composed of arrays of compact discrete neodymium magnets are proposed. The general properties of these slowers, as well as specific designs of short spin-flip Zeeman slowers for Sr and Rb atoms are described. The advantages of these slowers are their simplicity, low cost and absence of consumed electrical power and corresponding water cooling. The smoothness of the magnetic field together with ease of adjustability makes it possible to operate these slowers near the theoretical limits of deceleration, making them more compact and efficient.  相似文献   

7.
In setting up field-cycling experiments aimed to study physical phenomena in the low-field region, magnetic field contributions from external sources (earth’s field, environment, other magnets, etc.) become important. Indeed, a compensation of these contributions has successfully been used for the application of field-cycling methods to nuclear magnetic relaxation and double resonance experiments. This feature becomes relevant in samples where local fields are stronly averaged due to motional narrowing, on the ground that relaxation experiments can therefore be extended to lower fields. Compensation of external contributions is also crucial for the study of kinky processes related to internal local fields. In this article we outline NMR field-cycling experiments aimed to detect and quantify the external net magnetic field sensed by the spin-system. Both parallel and normal components with respect to the high-field Zeeman axis can be determined separately by using different experimental protocols.  相似文献   

8.
Depositing magnetic insulators on graphene has been a promising route to introduce magnetism via exchange proximity interaction in graphene for future spintronics applications.Molecule-based magnets may offer unique opportunities because of their synthesis versatility.Here,we investigate the magnetic proximity effect of epitaxial iron phthalocyanine(FePc) molecules on high-quality monolayer and bilayer graphene devices on hexagonal boron nitride substrates by probing the local and nonlocal transport.Although the FePc molecules introduce large hole doping effects combined with mobility degradation,the magnetic proximity gives rise to a canted antiferromagnetic state under a magnetic field in the monolayer graphene.On bilayer graphene and FePc heterostructure devices,the nonlocal transport reveals a pronounced Zeeman spin-Hall effect.Further analysis of the scattering mechanism in the bilayer shows a dominated long-range scattering.Our findings in graphene/organic magnetic insulator heterostructure provide a new insight for use of molecule-based magnets in two-dimensional spintronic devices.  相似文献   

9.
The helical crystal structure in α-quartz acts as the natural micro-solenoids for an electromagnetic wave passing through them, producing a longitudinal magnetic field in the direction of the optical axis. The longitudinal magnetic field further induces the Larmor frequency for the rotation of the bound electrons. The calculated Larmor frequency was experimentally confirmed by monitoring a line splitting of the infrared OH-band in the transmission spectra of α-quartz. A shift in the resonance frequency of the OH-band is equal to the Larmor frequency induced by the natural Zeeman effect.  相似文献   

10.
激光谐振腔内相位各向异性会引起频率分裂,两分裂模的频差大小由表现出的相位延迟所决定.对于腔内相位延迟较小的He-Ne激光器,两分裂模很接近,处于烧孔重叠区,存在模式竞争而不能同时振荡,形成隐频率分裂.同时,使得激光器两正交偏振方向上的相邻级纵模产生固定的变动量,其大小等于隐频率分裂量的2倍.如果沿激光偏振方向施加横向磁场,Ne原子谱线发生横向Zeeman分裂,增益原子分成两群,分别为平行于磁场和垂直于磁场方向偏振的光提供增益,大大减弱模竞争,使得激光器的两分裂模可同时振荡并测得频差.在谐振腔内放入倾斜的石英晶体片或半波片,由两种方法分别测量频率分裂量并进行比较.实验表明两种方法测量的结果均与理论计算相符,平均相对偏差不超过1%.据此可以准确得到Zeeman双频激光器的频差大小,并为半波片测量提供了新方法.  相似文献   

11.
If a permanent magnet has both a homogeneous polarization inside the material and a linear demagnetization characteristic in external fields, its magnetic field can be expressed using a surface pole model. For magnets satisfying these conditions and, in addition, having a rectangular shape, the fields at any given point in space can be calculated analytically. An algorithm for this calculation is presented in a form that can easily be implemented into a computer program. In our experiments we used Nd2Fe14B magnets to support low pressure glow discharges by magnetic fields. The magnets can be seen as composed of elementary magnets with rectangular shape, for which the magnetic field distribution is calculable. We present results of field calculations for various configurations of permanent magnets that we used in hollow cathode and Penning discharges.  相似文献   

12.
The experiments on the laser cooling and trapping of ytterbium atoms are reported, including the two-dimensional transversal cooling, longitudinal velocity Zeeman deceleration, and a magneto-optical trap with a broadband transition at a wavelength of 399 nm. The magnetic field distributions along the axis of a Zeeman slower were measured and in a good agreement with the calculated results. Cold ytterbium atoms were produced with a number of about 107 and a temperature of a few milli-Kelvin. In addition, using a 556-nm laser, the excitations of cold ytterbium atoms at 1S0-3P1 transition were observed. The ytterbium atoms will be further cooled in a 556-nm magneto-optical trap and loaded into a three-dimensional optical lattice to make an ytterbium optical clock.   相似文献   

13.
Magnetic topological materials, which combine magnetism and topology, are expected to host emerging topological states and exotic quantum phenomena. In this study, with the aid of greatly enhanced coercive fields in high-quality nanoflakes of the magnetic Weyl semimetal Co_3Sn_2S_2, we investigate anomalous electronic transport properties that are difficult to reveal in bulk Co_3Sn_2S_2 or other magnetic materials. When the magnetization is antiparallel to the applied magnetic field, the low longitudinal resistance state occurs, which is in sharp contrast to the high resistance state for the parallel case. Meanwhile, an exceptional Hall component that can be up to three times larger than conventional anomalous Hall resistivity is also observed for transverse transport. These anomalous transport behaviors can be further understood by considering nonlinear magnetic textures and the chiral magnetic field associated with Weyl fermions, extending the longitudinal and transverse transport physics and providing novel degrees of freedom in the spintronic applications of emerging topological magnets.  相似文献   

14.
Anupam Garg 《Pramana》2001,56(2-3):411-424
We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.  相似文献   

15.
通过外加塞曼磁场在d波超导中,研究磁场对d波超导及其正常金属/d波超导结中隧道谱的影响。研究表明(1)塞曼磁场能使能隙变小,且随着磁场变大,超导态会变为正常态,产生一级相变;(2)塞曼磁场可导致零偏压电导峰劈裂,劈裂宽度为2h0(h0为塞曼能)。  相似文献   

16.
本文从理论上分析了环形激光弱磁传感器主要误差因素并提出了若干克服这些因素的方法。这些误差因素是:大尺寸的法拉第室引入的噪声,磁光材料的费尔德常数的温度系数,塞曼效应的混入、朗谬尔效应等。  相似文献   

17.
Faraday rotation of a laser beam and emission spectroscopy to resolve Zeeman splitting provide information about the plasma magnetic field, integrated along the line of sight. Information about the local magnetic field strength can be obtained using a dye laser tuned off the center of an atomic or ionic transition by an amount δλz. If the absorption linewidth of the transition probed is less than the Zeeman splitting, only those atoms/ions residing in a magnetic field where the Zeeman splitting is δλz will resonantly absorb energy from the laser and fluoresce. The feasibility of this magnetic field contour technique was studied in a low-pressure neon discharge. A conductor insulated from the discharge generated a large magnetic field in the discharge free of the Stark broadening effects associated with large plasma currents. The laser-induced fluorescence (LIF) intensity profile measured along the laser beams had peaks at those spatial locations where local magnetic fields, inferred from the conductor current, agreed with the Zeeman shifted wavelength of the laser  相似文献   

18.
A new method for the measurement of motional frequencies and amplitudes of stored ions in a radio-frequency trap is presented. Ions oscillating in the trap potential and additionally subjected to a small magnetic field, undergo sublevel transitions between adjacent Zeeman states when their motional frequency is identical with the Larmor frequency in the applied magnetic field. These transitions can be sensitively detected by means of an optical pumping scheme. As they are related to a coherent superposition of adjacent states and originate from the inherent motion of the ions in a slightly inhomogeneous magnetic field, this phenomenon is termed self-induced Zeeman coherence.  相似文献   

19.
We study the Zeeman effect on the d-wave superconductor and tunneling spectrum in normal-metal(N)/d-wave superconductor(S) junction by applying a Zeeman magnetic field to the S. It is shown that: (1) the Zeeman magnetic field can lead to the S gap decreasing, and with the increase in Zeeman energy, the superconducting state is changed to the normal state, exhibiting a first-order phase transition; (2) the Zeeman energy difference between the two splitting peaks in the conductance spectrum is equal to2h0 (h0 is the Zeeman energy); (3) both the barrier strength of interface scattering and the temperature can lower the magnitudes of splitting peaks, of which the barrier strength can lead to the splitting peaks becoming sharp and the temperature can smear out the peaks,however, neither of them can influence the Zeeman effect.  相似文献   

20.
振动线准直技术是一种通过直接测量空间磁场分布情况来进行磁铁设备准直的方法,其原理完全不同于目前国内正在使用的基于磁铁机械结构进行准直的方法。振动线方法具有很高的准直精度和灵敏性,可以用于单个磁铁磁中心测量、磁铁准直标定和多块磁铁磁中心准直等。主要介绍了振动线准直技术的原理、起源和国际上的应用研究概况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号