首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
CuInSe2 ternary films were prepared by successive ionic layer absorption and reaction (SILAR) method. The films were deposited on glass substrates at room temperature and subject to heat-treatment under Ar atmosphere at various calcination temperatures, and then characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), optical absorption spectroscopy. XRD results showed that chalcopyrite structure CuInSe2 with high degree of preferred orientation towards (112) reflection could be obtained by post-heat treatment. The compositions of films calcined at 300~400 ℃ were close to the standard stoichiometry and Cl impurity decreased after calcination. The direct band gap increased from 0.94 eV to 0.98 eV with the increase of calcination temperature.  相似文献   

2.
In this work, Ba(NO3)2 crystals with single crystal face were induced by using the the method of bio-mimetic mineralization and double LB films of behenic acid (BA) as the template. The crystals were characterized by Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD). The crystals were observed in regular square shape with uniform size about 5~8 μm by SEM, and they were found by XRD to grow along the (111) plane. From these experiments, we can conclude that the good selection of the (111) crystal face of Ba(NO3)2 is due to the electrostatic interactions , the match between this crystal face and the definite lattice structure of the LB films.  相似文献   

3.
Thin hybrid films of ZnO/eosin-Y were prepared by electrodeposition at-0.8 and-0.9 V in aqueous and non-aqueous baths at temperatures ranging from 40 to 90 ℃ with dye concentrations of 100 and 400 μmol·L-1.The films were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),energy-dispersive X-ray analysis (EDX),and absorption spectroscopy.The films prepared in a non-aqueous bath were non-porous and did not adsorb dye molecules on their surface.However,the films grown in aqueous media were porous in nature and adsorbed dye during the deposition of ZnO.Preferential growth of the film along the (002) face was observed,and the highest crystallinity was achieved when the film was deposited at 60 ℃.The maximum absorption was achieved for the films grown at 60 to 70 ℃,a deposition potential of-0.9 V,and a dye concentration of 100 μmol·L-1.  相似文献   

4.
张建国  张同来  刘艳红 《中国化学》2005,23(10):1403-1406
[Cu(TO)2(H2O)4](PA)2 was prepared by the reaction of aqueous 1,2,4-triazol-5-one (TO) solution with the solution of copper picrate Cu(PA)2 and characterized by elemental analysis, FT IR and X-ray powder diffraction analysis. The title complex has been studied by means of TG-DTG and DSC under conditions of linear temperature increase. The thermal decomposition residues were examined by FT IR analysis. Thermal decomposition mechanism of the title complex was proposed. In the temperature range of 30-680 ℃, the thermal decomposition process was composed of four major stages. The first stage was an endothermic process with the loss of four coordination water molecules. Since the dehydration product was unstable, when it was heated, it would be decomposed much more easily. The second stage was composed of an acute endothermic process and a continued strong exothermic process and the main decomposed residues were CuCO3, Cu(NCO)2 and polymers during this stage. The third stage was a sharp exothermic process, which resulted from the decomposition of the polymer. After the forth stage, the final decomposed residues were certainly copper oxide. The Arrhenius parameters have been also studied on the dehydration process and the first-step exothermic decomposition of [Cu(TO)2(H2O)4](PA)2 using Kissinger's method and Ozawa-Doyle's method. The results using both methods were consistent with each other. The Arrhenius equation can be expressed as in k=24.0-179.8 × 10^3/RT for the dehydration process and in k= 16.7-206.0 × 10^3/RT for the first-step exothermic decomposition, on the basis of the average of Ea and In A through the two methods.  相似文献   

5.
The mixed-valence manganese(Ⅲ/Ⅳ) complex [Mn2(cyclen)2(μ-O)2](ClO4)3-4H2O (1) (cyclen=1,4,7,10-tetraazacyclododecan) with chemical formula C16H48Cl3Mn2N8O18 has been synthesized and characterized by single crystal X-ray diffraction analysis, elemental analysis, IR and electronic spectra. The results showed that the manganese(Ⅲ/Ⅳ) ions were six-coordinated by four nitrogen atoms from cyclen and two oxygen atoms from the oxygen bridge, forming a distorted octahedron geometry. There were two very strong peaks in the range of 400-700 nm in electronic spectrum, which was similar to Mn catalase and Mn ribonucleotide reductase extracted from organisms.Electrochemical study indicated that the complex underwent a quasi-reversible one-electron reduction and oxidation at E1/2=0.827 V in acetonitrile.  相似文献   

6.
Preparation and characterization of perfluorosulfonic resin/titania organic-inorganic hybrid films were presented. The transparent hybrid films were prepared by hydrothermal treatment at low temperature of a mixed solution of tetrabutyl titanate and perfluorosulfonic resin with the help of acetylacetone. The characterization was carried out by SEM,XRD,FT-IR,UV-Vis and TGA. The results showed that the perfluorosulfonic resin/titania hybrid transparent films were composed of titania particles dispersed in the perfluorosulfonic resin matrix very well and the titania was of anatase phase. Its diameter de-creased with increasing weight ratio of titania to perfluorosulfonic resin.  相似文献   

7.
Nano-sized Ni particles on TiO2-SiO2 were synthesized by the two methods of photo-assisted deposition(PAD) and impregnation.H2,which is a promising energy carrier,with a low CO concentration was produced by the photocatalytic reforming of glucose(a model biomass) on the Ni/TiO2-SiO2 catalyst.The supported Ni enhanced the rate of H2 production while it suppressed CO selectivity.The catalysts were characterized by X-ray diffraction,X-ray absorption fine structure,transmission electron microscope,and nitrogen adsorption analysis.Both H2 production and CO selectivity were strongly dependent on the preparation method,and PAD-Ni/TiO2-SiO2 was the better catalyst for H2 production with the lowest CO concentration.  相似文献   

8.
The title complex, [CaCu(C3H2O4)2(H2O)4]n, with a formula of C6H12CaCuO12 and Mr=379.78 has been sy-nthesized and characterized by single crystal X-ray diffraction structure analysis, elemental analysis, IR spectra and TG-DTG techniques. The results show that the crystal is Orthorhombic, space group Pbcn with a=0.669 21(5) nm, b=1.370 23(5) nm, c=1.322 39(10) nm, V=1.212 59(16) nm3, Dc=2.080 g·cm-3, μ=2.288 mm-1, F(000)=772 and Z=4. The final R=0.054 0 and wR=0.112 8 for 1 189 observed reflections with I>2σ(I). The structure of the title complex consists of CaO8 polyhedra and CuO6 elongated octahedra linked together by malonate ligands. The Ca(Ⅱ) cation, on a twofold axis, is coordinated by two water molecules and six malonate O atoms. The Cu(Ⅱ) cation, which lies in a centre of symmetry in an octahedral arrangement, is coordinated by four malonate O atoms and two water molecules. The structure comprises alternating layers along the [101] plane, with the shortest Cu…Cu distance of 0.762 46(6) nm. The whole 3D structure is maintained and stabilized by the presence of hydrogen bonds. Its thermo gravimetric analysis was determined by TG-DTG techniques. CCDC:663184.  相似文献   

9.
CuInS2 thin films have been prepared by ion layer gas reaction (ILGAR) using C2H5OH as solvent, CuCl and InCl3 as reagents and H2S gas as sulfuration source. The effects of cationic concentrations and numbers of cycle on the properties of CuInS2 film were investigated. The chemical composition, crystalline structure, surface topography, deposited rate, optical and electronic properties of the films were characterized by X-ray diffractrometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), ultraviolet-visible spectrometry (UV-Vis) and Hall System. The results show that the crystalline of CuInS2 thin films and the deposition rate have been improved with the increase of cationic concentration, while CuxS segregation phases appear with further increasing cationic concentration. The deposition rate is close to constant as cationic concentration is fixed. CuInS2 thin film derived form lower cationic concentration is uniform, compact and good in adhesion to the substrates. The absorption coefficient of CuInS2 thin films is larger than 104 cm-1, and the band gap Eg is in the range of 1.30~1.40 eV. The dark resisitivity of the thin film decreases from 50 to 10 Ω·cm and the carrier concentration ranges are over 1016 cm-3.  相似文献   

10.
LaNiO3(LNO) thin films were prepared on Pt(111) / Ti / SiO2/ Si substrate by metal-organic decomposition (MOD) method. Pb(Zr,Ti)O3 ferroelectric thin films and their compositionally graded thin films were prepared on LNO / Pt / Ti / SiO2 /Si substrates by Sol-gel method. The composition depth profile of a typical up-graded film was determined by using a combination of Auger Electron Spectroscopy (ASE) and Ar Ion Etching. The results confirm that the processing method produces graded composition changes. XRD analysis showed that the graded thin films possessed composite structure of tetragonal and rhombohedral. The dielectric constants of Up-graded and Down-graded thin films were higher than that of each thin film unit. The dielectric constants were 277 and 269 at 10 kHz, respectively. The loss tangents were 0.019 and 0.018 at 10 kHz, respectively. The Hysteresis loops showed that the remanent polarizations of graded thin films were higher than that of each thin film unit, but the coercive fields were smaller. The remanent polarizations of Up-graded and Down-graded thin films were 30.06 and 26.96 μC·cm-2, respectively. The coercive fields were 54.14, 54.23 kV·cm-1, respectively. The pyroelectric coefficients of Up-graded and Down-graded thin films were 4.62, 2.51×10-8 C·cm-2·K-1 at room temperature, respectively. They were higher than that of each thin film unit.  相似文献   

11.
Sol-Gel derived mesoporous titania films with controlled pore sizes were prepared by surfactant templating. The coating sol was obtained by hydrolysis of Ti(OC4H9)4 in ethanol/HCl solution. The gel films, prepared by spin coating on glass substrate, were dried after immersion in surfactant solutions under an atmospheric pressure. The porous films of anatase with columnar and rectangular structure were obtained after annealing at 500°C. The annealed films are transparent and 80–140 nm in thickness. Refractive indices of the films with surfactant immersion were 10–20% lower than those of the films without immersion. The spacing between the columns or rectangular grains and the grain shape were found to depend on the surfactant species. The pohoto-catalytic activity of the films for the oxidation of NO x was improved by the surfactant modification.  相似文献   

12.
Owing to the diverse potential applications of hybrid silica–titania thin films, the synthesis and characterization of these films have been carried out with a special focus on application as a medium index layer for multilayered functional coatings. For synthesis, tetraethylorthosilicate and titanium tetraisopropoxide were chosen as precursors for the formation of silica-titania hybrid thin films/nano-composites through an in situ sol–gel process. These films were sequentially obtained on Cu substrate utilizing spin coating. The hybrids were characterized by field emission scanning electron microscope, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction, atomic force microscopy and Fourier transform infrared spectroscopy (FTIR). Field emission scanning electron microscope morphology displayed a smooth, densified and crack- free layer of silica-titania hybrid nanoparticles in the range of 20–71 nm after calcinations at low temperature of 300ºC for 1 h. X-ray diffraction pattern confirms the phases of titania with higher crystallinity and phase transformation at low temperature. The prepared films were uniform with low 8.852 nm RMS value. The stoichiometry of films was confirmed by EDX results. The FTIR spectroscopy indicated the establishment of heterogeneous chemical bonding between the Ti and Si surfaces through oxygen.  相似文献   

13.
Using a combination of scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction and X-ray photoelectron spectroscopy (XPS), we made a comparative study of the high-temperature annealing impact on thin titanium deuteride (TiD y ) films covered by an ultrathin Pd layer, and on Ti/Pd bilayer films. The bilayer films were prepared under ultrahigh vacuum conditions and were in situ annealed using the same annealing procedure. It was found that the surface and the bulk morphology of both films undergo different annealing-induced transformations, leading to an extensive intermixing between the Ti and Pd layers and the formation of a new PdTi2 bimetallic phase. Energy-filtered TEM imaging and energy-dispersive X-ray spectrometry analysis, as well as XPS depth profiling all provided evidence of a different distribution of Pd and Ti in the annealed TiD y /Pd film compared with the annealed Ti/Pd film. Our results show that thermal decomposition of TiD y , as a consequence of annealing the TiD y /Pd film, modifies the intermixing process, thereby promoting Ti diffusion into the Pd-rich top layer of the TiD y film and thus providing a more likely path for the formation of the PdTi2 phase than in an annealed Ti/Pd film. Figure Figure Microstructural and chemical characterisation of thin TiDy/Pd film after annealing  相似文献   

14.
The present investigation reports TiO2 coating on magnesium alloy AZ31 by sol–gel method via dip coating technique. TiO2 coated surface was characterized by thin film X-ray diffraction (TF-XRD), Fourier transform infrared red (FT-IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM) techniques. From TF-XRD results, the peaks at 2θ values of 25.14, 32.12, 68.73 and 70.11 confirm the presence of TiO2. The TiO2 is crystalline in nature and the crystallite size is about 32.4 nm. SEM-EDX, TEM and AFM show that the coated surface is uniform and nanoporous. FT-IR analysis shows that the peak in the range of 692 cm?1 is assigned to Ti–O–Ti stretching vibration. Contact angle measurements show that the coating is hydrophilic in nature. Bioactivity of the coating in simulated body fluid (SBF) was also examined, the hydroxyl functionalized surface greatly enhances the hydroxyapatite growth. The potentiodynamic polarization studies prove that the corrosion resistance of the TiO2 coated surface after immersion in SBF for 7 days is improved dramatically. Cell adhesion studies confirm the increased cell attachment on TiO2 coated surface when compared to uncoated alloy, due to less amount of Mg ion release from the substrate in the culture medium.  相似文献   

15.
Thin titanium deuteride (TiDy) films, covered by an ultra-thin palladium layer, have been compared with the corresponding titanium and palladium films using a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The TiDy layers were prepared under ultra-high vacuum (UHV) conditions by precisely controlled deuterium sorption at 298 K on a Ti film evaporated onto a Si(100) substrate. Both Ti and TiDy films were then covered in situ by a nanoscale Pd layer. It was found that a 10- to 12-nm-thick Pd layer protects the TiDy films efficiently against extensive air interaction. The morphology of both the surface and bulk Pd/TiDy (Ti) films have been observed using SEM and cross-sectional TEM analysis, respectively. A polycrystalline bulk morphology in both Ti and TiDy films accompanied by a fine-grained Pd surface was observed. High-magnification cross-sectional TEM images reveal the TiDy film to be plastically deformed leading to an increase in the roughness of the top Pd layer. Complex structures, including Moiré patterns, have been identified within the Pd/TiDy interface. The chemical nature of this interface has been analysed after partial sputtering of the Pd top layer using XPS. Besides TiDy and Pd, TiO and PdO were found to be the main chemical species in the interface region of the Pd/TiHy film. The XPS valence-band spectra of the Pd/TiDy interface reveal electronic features characteristic of a Pd–Ti bimetallic structure.  相似文献   

16.
In this study, the synthesis, morphology, and thermal properties of amino acid containing polyimide/titania nanohybrid films are investigated. At first, a chiral diamine containing l-leucine moieties in the structure (synthesized previously) was polymerized with 4,4′-oxydiphthalic anhydride in extremely dry conditions. Resulted poly(amic acid) (PAA) was mixed with a moisture-sensitive titania precursor (tetraethyl orthotitanate [Ti(OEt)4]) and casted to a dust-free glass plate. The water derived from thermal imidization of PAA hydrolyzed Ti(OEt)4 to titania nanoparticles with almost spherical shapes. The thermogravimetric analysis of various nanocomposites confirms the improvement in the thermal stability with the increase in the percentage of titania nanoparticle. The transmission electron microscopy of nanohybrid films with 3%, 5%, and 10% w/w of titania contents confirms well dispersion of nanoparticles in the polymer ground. The X-ray diffraction spectra showed that the titania contents have amorphous structure.  相似文献   

17.
Lead-free (Na0.5K0.5)NbO3 (NKN) thin films were prepared on Pt/X/SiO2/Si substrates (with the adhesion promoters X = Ti, Cr) by a sol–gel process with and without post-annealing treatment. The effect of the diffusion of the adhesion layer elements Ti and Cr into the NKN film was analysed by secondary ion mass spectrometry, scanning electron microscopy pictures, X-ray diffraction (XRD), and leakage current measurements. It turned out that Cr diffuses into the films to a higher extent than Ti. The high amount of Cr diffusion led to the formation of a secondary phase, as seen in the XRD pattern, and to pore formation on the surface of the NKN films. In contrast, the films with Ti adhesion layer were single phase NKN without pore formation. Also, the leakage current measurements showed a strong influence of the Cr diffusion. The leakage current of the films with Cr adhesion layer was about four orders of magnitude higher than that of the films with Ti adhesion layer. The study shows the strong influence of the adhesion layer of the substrate on the properties of NKN films.  相似文献   

18.
Titanium dioxide (TiO2) thin films, with and without silver (Ag), were prepared on float glass via sol–gel processing. The float glass substrates were pre-coated with a silica-barrier layer prior to the deposition of TiO2-based thin films. Silver nanoparticle incorporation into the TiO2 matrix was achieved by thermal reduction of Ag ions dissolved in a titanium-n-butoxide (Ti[O(CH2)3CH3]4) based sol during calcination in air at 250, 450 and 650 °C. Thin films were characterized using glancing incidence X-ray diffraction, UV–visible spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. The effects of Ag concentration and calcination temperature on microstructure and on chemical and physical properties of the thin films have been reported. The size and chemical state of Ag particles, as well as the phase characteristics of the titania matrix were strongly influenced by Ag concentration and calcination temperature. Results from this study can be utilized in both processing and structure-functional property optimization of sol–gel based Ag-TiO2 thin films by aqueous routes.  相似文献   

19.
Mesoporous titania, especially anatase, is attractive due to its potential applications. A novel method to control pore structure of titania, surfactant- or polymer modification, is proposed. The wet gels and gel films, prepared from Ti(O-nC4H9)4 were dried at 90°C and annealed at 500°C after immersion in surfactant or polymer solutions, and mesoporous anatase was obtained. The pore size, pore volume and specific surface area of the surfactant-modified bulk gels, estimated from N2 absorption-desorption curves, are more than twice larger than those of the gels without modification. The pore size of the surfactant-modified gel films, observed by SEM, are similar to that of the bulk gels. The pore size obviously depended on the size of micelles. The pore size of the gels modified with hydrophilic polymers hardly increased, but the pore volume and the specific surface area increased.  相似文献   

20.
Visible-light-activated C-modified anatase titania films have been synthesized from TiCl4 and carbonic ink by using the sol–gel route. The synthesized photocatalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and optical measurements. The modifying carbon not only produces homogeneous worm-like structure with uniform pores, but also extends the absorbance spectra of the as-prepared films into visible region. The results of visible-light-induced degradation of methyl orange (MO) show that the C-modified titania films exhibits much higher photocatalytic activities than that of pure titania film prepared at the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号