首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of in vitro bioactivity and MG63 Oesteoblast cell response for TiO2 coated magnesium alloys
Authors:P Amaravathy  C Rose  S Sathiyanarayanan  N Rajendran
Institution:1. Department of Chemistry, Anna University, Chennai, 600 025, India
2. CSIR-Central Leather Research Institute, Adyar, Chennai, 600 020, India
3. Corrosion Testing and Evaluation Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630 006, India
Abstract:The present investigation reports TiO2 coating on magnesium alloy AZ31 by sol–gel method via dip coating technique. TiO2 coated surface was characterized by thin film X-ray diffraction (TF-XRD), Fourier transform infrared red (FT-IR) spectroscopy, scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM) techniques. From TF-XRD results, the peaks at 2θ values of 25.14, 32.12, 68.73 and 70.11 confirm the presence of TiO2. The TiO2 is crystalline in nature and the crystallite size is about 32.4 nm. SEM-EDX, TEM and AFM show that the coated surface is uniform and nanoporous. FT-IR analysis shows that the peak in the range of 692 cm?1 is assigned to Ti–O–Ti stretching vibration. Contact angle measurements show that the coating is hydrophilic in nature. Bioactivity of the coating in simulated body fluid (SBF) was also examined, the hydroxyl functionalized surface greatly enhances the hydroxyapatite growth. The potentiodynamic polarization studies prove that the corrosion resistance of the TiO2 coated surface after immersion in SBF for 7 days is improved dramatically. Cell adhesion studies confirm the increased cell attachment on TiO2 coated surface when compared to uncoated alloy, due to less amount of Mg ion release from the substrate in the culture medium.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号