首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 301 毫秒
1.
多波长透射光谱能够反映出样品细胞大小、形状、内部结构和化学组分等丰富而独特的信息,是微生物快速、实时、在线检测与识别的有利工具。将多波长透射光谱技术应用于水体致病性细菌微生物的快速有效检测对控制水体细菌微生物污染及保护饮用水源水质安全具有重要的现实意义。为了建立及发展基于多波长透射光谱技术的水体致病性细菌微生物快速有效的检测方法,采用紫外-可见分光光度计获取了多种水体致病性细菌微生物(如:肺炎克雷伯氏菌、鼠伤寒沙门氏菌、金黄色葡萄球菌和大肠杆菌)在200~900nm波段的多波长透射光谱,对比分析了不同细菌及同种细菌在不同浓度时的多波长透射光谱特征。结果表明:对于同种细菌,当细菌浓度发生变化时,400~900nm波段透射光谱形状较为一致,并且在400,450,500和550nm波长处的光密度值与浓度具有很好的线性关系,该波段由细菌体的散射起主要作用;但在200~400nm波段范围内,细菌透射光谱的形状随细菌浓度的变化而变化,在200,258,300和350nm波长处的光密度值与细菌浓度分别具有很好的二次多项式关系。根据微粒的Mie散射理论,采用Levenberg-Marquardt非线性最小二乘方法对测得的四种细菌透射光谱进行了散射光谱和吸收光谱拟合,并对比分析了不同细菌散射光谱特征和吸收光谱特征,结果表明:四种细菌散射光谱的特征峰均在245nm波长处,但该波长处的光密度值具有明显差异性,这与不同细菌外部结构及内部结构细胞器的大小、形状等不同有关;而四种细菌吸收光谱特征峰均在260nm波长处,且不同细菌在240~400nm波段内吸收光谱也具有明显差异性,这与不同细菌细胞内的核酸、蛋白质等化学组分含量不同有关。该研究表明对于不同种细菌及具有不同浓度的同种细菌,测得的多波长透射光谱及计算出的散射光谱和吸收光谱特征都具有明显的不同,通过多波长透射光谱解析可以获得细菌多种特征参数,多波长透射光谱可以被用于快速有效检测水体中的致病性细菌微生物。该研究为发展水体细菌微生物快速在线监测仪提供了重要依据。  相似文献   

2.
细菌多波长透射光谱包含有细菌结构、组分、浓度等信息,这些特征信息的有效提取是实现细菌微生物快速识别与检测的基础。以水体常见的大肠埃希氏菌(大肠杆菌)为研究对象,采用紫外-可见分光光度法获得了其多波长透射光谱;基于Mie散射理论,在充分考虑水体大肠杆菌散射和吸收特性的基础上,构建了240~900nm波段范围内细菌微生物多波长透射光谱的解析模型;基于该模型对250~750nm特征波段范围内的光谱进行解析,获得了大肠杆菌的体积、粒径、结构及浓度等相关参数,并将这些参数与文献及实验得到的结果进行了对比验证。结果表明,建立的多波长透射光谱解析模型能够准确表征水体细菌微生物的光谱特征,该模型可为水体细菌微生物的快速识别分析和检测提供关键数据。  相似文献   

3.
细菌多波长透射光谱包含有细菌结构、组分、浓度等信息,这些特征信息的有效提取是实现细菌微生物快速识别与检测的基础。以水体常见的大肠埃希氏菌(大肠杆菌)为研究对象,采用紫外-可见分光光度法获得了其多波长透射光谱;基于Mie散射理论,在充分考虑水体大肠杆菌散射和吸收特性的基础上,构建了240~900nm波段范围内细菌微生物多波长透射光谱的解析模型;基于该模型对250~750nm特征波段范围内的光谱进行解析,获得了大肠杆菌的体积、粒径、结构及浓度等相关参数,并将这些参数与文献及实验得到的结果进行了对比验证。结果表明,建立的多波长透射光谱解析模型能够准确表征水体细菌微生物的光谱特征,该模型可为水体细菌微生物的快速识别分析和检测提供关键数据。  相似文献   

4.
搭建的水体细菌微生物多波长透射光谱快速测量实验系统,实验获取了肺炎克雷伯菌、金黄色葡萄球菌和大肠杆菌在不同浓度下220~900 nm范围内的多波长透射光谱,研究建立了三种细菌基于不同波长点及全光谱波段的浓度校准曲线,计算了肺炎克雷伯菌、金黄色葡萄球菌和大肠杆菌的检测限,并与紫外-可见分光光度计测量分析结果进行了对比。结果表明,实验系统与紫外-可见分光光度计测量光谱线性相关系数在0.999 8以上,具有非常好的一致性,且30次光谱信号采集时间仅需15 s;基于实验系统分析得到三种细菌在220,258,300,350,400,450,500和550 nm不同波长点以及全光谱波段的检测限结果均优于紫外-可见分光光度计,且利用多波长透射光谱全光谱波段计算得到的细菌检测限均最低,其中:肺炎克雷伯菌、金黄色葡萄球菌和大肠杆菌的检测限分别为1.60×104,1.06×104和1.16×104 cells·mL-1。研究结果为进一步发展水体细菌微生物的多波长透射光谱快速定量检测技术提供了基础数据。  相似文献   

5.
为实现水体细菌微生物快速在线监测,搭建了多波长透射光谱快速测量实验系统,利用该系统分别测量了重铬酸钾标准溶液紫外波段及中性滤光片可见波段的透射光谱,并与紫外-可见分光光度计测得的透射光谱进行对比分析,验证了实验系统测量透射光谱的准确性;以水体中常见的金黄色葡萄球菌作为研究对象,利用搭建的实验系统获取金黄色葡萄球菌溶液在220~900 nm波段的前向小角度透射光谱,进一步验证了实验系统测量细菌微生物透射光谱的准确性和快速性。结果表明,由实验系统和紫外-可见分光光度计测得的重铬酸钾标准溶液,与中性滤光片紫外波段及可见波段透射光谱的线性拟合相关系数分别为0.999 7和0.999 5,光密度误差分别在5.00%和4.58%以内,说明两个系统测量光谱的一致性较好,所搭建的实验系统测量标准样品紫外-可见透射光谱准确度较高;对于金黄色葡萄球菌,实验系统测得的透射光谱经过校正后,与紫外-可见分光光度计测得的透射光谱线性拟合的相关系数为0.999 97,两者相比的光密度误差在0.74%以内;系统重复30次细菌光谱信号采集获得平均透射光谱单次测量时间为15 s,说明该实验系统相对于紫外-可见分光光度计能够快速准确获取水体细菌微生物多波长透射光谱,在保证测量结果准确的同时缩短了光谱测量时间,为水体细菌微生物快速检测提供技术支持。  相似文献   

6.
通过分析细菌细胞的结构特征,将细菌菌体的多波长散射分为外部结构散射和内部结构散射两个部分,建立了细菌菌体前向散射光谱解释模型。利用该模型对大肠杆菌400~900 nm波段的前向散射光进行了快速解析,得到了大肠杆菌外部结构、内部结构的平均粒径大小及两结构占细菌体前向散射的比例;基于单细胞的散射光密度与整体细菌悬浮液光密度之间的关系可以快速检测出细菌的浓度。多次细菌浓度测量结果之间的最大差异为1.83%,且与平板法相比较,测量结果在同一量级,相对误差为3.44%。对不同生长时期的大肠杆菌和肺炎克雷伯菌进行了光谱解析,得到了两种细菌浓度及菌体大小随时间的变化曲线。研究结果不仅为细菌微生物生长过程的科学研究提供了一种快捷方法,而且为水体细菌微生物的快速检测与预警提供了技术手段。  相似文献   

7.
实现水体致病菌的快速识别检测对防控由水体微生物污染引起的大规模疾病爆发有重要的现实意义。生化鉴定、核酸检测等常规细菌检测方法存在耗费时间长、需要精密的实验仪器等特点,不足以满足水体细菌微生物的快速实时在线监测。由于细菌的多波长透射光谱包含较丰富的特征信息,并且这项光谱检测技术具有快速简便、无接触、无污染等优点,近年来成为细菌检测研究的热点。以肺炎克雷伯氏菌、金黄色葡萄球菌、鼠伤寒沙门氏菌、铜绿假单胞菌和大肠埃希氏菌为研究对象,通过对细菌光谱作归一化处理和方差分析得到光谱变动最显著的特征波长区间,在该区间提取200 nm处的吸光度值及短波段的斜率值作为光谱特征值,结合支持向量机对不同种类细菌进行预测。结果表明,多波长透射光谱的归一化预处理能够有效消除浓度影响,并保留完整的原始光谱信息;通过方差分析法得到特征波长区间为200~300 nm波段,在此区间内提取的五种细菌的归一化光谱趋势图的特征值分别为:200 nm处吸光度值为0.006 5,0.005 1,0.007 5,0.007 5和0.008 5,200~245 nm波段的斜率值为-62.45,-35.94,-81.30,-82.67和-103.49,250~275 nm波段处的斜率值为-15.48,-14.82,-20.91,-13.92和-26.21,280~300 nm波段处的斜率值为-29.96,-24.62,-33.71,-36.09和-30.88。对样本提取特征值并随机划分训练集和测试集,支持向量机选择惩罚因子模型以及线性核函数,通过寻优算法确定最佳的惩罚因子参数c和核函数参数g,对测试集样本进行测试,得到细菌种类的识别结果,五种细菌的预测准确率均达到100.0%。综上所述,水体致病菌的多波长透射光谱通过合适的数据预处理能够提取出具有明显差异性的光谱特征值,该光谱特征值结合支持向量机能够有效用于不同细菌种类的识别,该方法为水体细菌快速识别和实时在线监测提供了重要的技术支持。  相似文献   

8.
快速准确获取水体细菌微生物浓度信息,对饮用水卫生安全监管具有重要意义。基于多波长透射光谱技术研究了水体细菌微生物浓度定量反演方法,并重点研究了光谱数据的归一化处理方法(颗粒浓度归一化、最大值归一化、积分归一化、平均归一化)对水体细菌微生物浓度反演结果准确性的影响。基于Mie散射理论建立了大肠埃希氏菌(大肠杆菌)多波长透射光谱解析模型,通过对归一化后的光谱进行解析,获取了大肠杆菌的结构信息,并以此构建出单种细菌的多波长透射参考光谱;根据测量光谱与单种细菌参考光谱的相关性反演细菌浓度,并对比分析了不同归一化处理方法下细菌浓度反演结果的准确性。研究结果表明:与平板菌落计数法相比,平均归一化光谱反演细菌浓度的最大相对误差为0.92%,平均相对误差为0.70%,线性相关系数达到0.9984,其准确性和稳定性均为最优。本研究为水体细菌微生物的快速定量检测与预警提供了基础数据。  相似文献   

9.
紫外可见多波长透射光谱包含了细菌微生物对光的吸收和前向散射等信息,能反映细菌细胞的组分、大小以及形态等特征,具有细菌种属的特异性,可应用于细菌微生物的快速种类鉴别。以水体中常见细菌微生物为研究对象,实验测量了大肠埃希氏菌、金黄色葡萄球菌、鼠伤寒沙门氏菌以及肺炎克雷伯菌的紫外可见多波长透射光谱,简要分析了不同种类细菌微生物的多波长透射光谱特征;研究了透射光谱与支持向量机多向量分析方法相结合的水体细菌微生物快速识别方法,利用基于网格搜索法的训练集内部交叉验证获取建模所需最佳惩罚因子C和核函数参数g,根据最优参数和LibSVM一对一多分类法建立细菌快速分类鉴别模型。利用不同株实验细菌的透射光谱作为测试集对所建模型进行识别正确率的验证,结果表明,所建立的快速分类鉴别模型可以对选取的大肠埃希氏菌、金黄色葡萄球菌、鼠伤寒沙门氏菌以及肺炎克雷伯菌进行快速种类识别,识别正确率为100%;分类鉴别模型对不同大肠杆菌亚种的测试集识别正确率为100%,证明该模型对细菌属间鉴别具有较好的稳定性。不仅可为饮用水源细菌微生物的快速识别预警提供方法,而且可在生物医学方面作为细菌微生物鉴别的一种简便、快速、准确的手段。  相似文献   

10.
《发光学报》2021,42(2)
采用多坩埚温度梯度法(Multi-crucible temperature gradient technology,MC-TGT)制备了Dy~(3+)掺杂氟化镧(Dy~(3+)∶LaF_3)晶体。通过电感耦合等离子体发射光谱仪、透射光谱、吸收光谱、荧光光谱等手段对Dy~(3+)在LaF_3晶体中的实际掺杂浓度、中红外透过光谱、可见光波段光谱特性等进行了研究。实验结果表明,Dy~(3+)在LaF_3晶体中的分凝系数约为0.8;格位浓度随着Dy~(3+)掺杂浓度提高而增加,2%Dy∶LaF_3晶体中的格位浓度达5.90×10~(20) ions·cm~(-3)。在1%Dy∶LaF_3晶体中,采用400 nm光激发,发光中心波长位于601 nm的发射谱带强度最大,位于511 nm的发射峰最宽,半高宽达152 nm;改用450 nm光激发,最强发射峰移至677 nm,最宽发射峰位于568 nm处。提高Dy~(3+)掺杂浓度到2%,采用400 nm或450 nm光激发,发光中心波长均位于478 nm和571 nm。在透射光谱2.5~9μm范围内,Dy∶LaF_3晶体(厚度为0.96 mm)红外波段透过率达85%以上。Dy∶LaF_3晶体有望在可见光、中红外等激光领域得到应用。  相似文献   

11.
土壤含水量的变化情况与时空分布对热量平衡、农业墒情等具有显著的影响。利用反射率光谱信息反演土壤含水量的研究,可为实现土壤含水量速测、揭示土壤含水量时空变异规律提供科学依据。构建不同含水量黑土土壤反射率光谱半经验模型,深入探究土壤重量含水量与反射率光谱的关系。 制备了12种不同湿度的土壤样品。 采用ASD Field Spec Pro 3地物波谱仪对制备的不同湿度梯度的黑土土壤进行反射率光谱测量。 利用菲涅耳反射率建立土壤表面反射模型;在以往的研究中,Kubelka-Munk (KM)模型中的漫反射率R通常被视为对于给定材料和照明波长的常数或需要反演的参数。通过研究发现,漫反射率R不仅与材料和波长有关,还与土壤含水量相关。利用与土壤含水量相关的吸收系数及散射系数描述了土壤含水量与漫反射率R的关系,并基于KM理论对体散射分量进行建模;进而构建不同含水量黑土土壤反射率光谱半经验模型。 根据实际测量数据选用最小二乘算法对模型参数进行反演,并通过分析反演参数简化模型。最后,将未参与建模的不同含水量梯度的数据代入模型中,验证模型的有效性。结果表明:对比不同含水量土壤反射率光谱的模拟值与实测值在400~2 400 nm波段范围内的模拟精度发现,含水量为200 g·kg-1的土壤反射率光谱的均方根误差最大,为0.008,含水量为40 g·kg-1的土壤反射率光谱的均方根误差最小,为0.000 6,不同含水量下土壤样品反射率光谱的均方根误差的均值是0.005 1。在400~2 400 nm波段范围内,不同波长下黑土土壤反射率光谱的预测均方根误差基本低于0.008,1 920 nm波长处的预测均方根误差最小,为0.002 062。采集长春地区的土壤检验模型的可靠性,配制15个不同含水量样品并对其进行反射率光谱测量。选取9个样品数据用于建模,6个样品数据用于验证。结果表明:在400~2 400 nm波段范围内,不同波长下的长春土壤反射率光谱的预测均方根误差基本低于0.015,525 nm波长处的预测均方根误差最小,为0.000 922 5。综上所述,所建立的模型具有很高的预测精度,可很好地适用于不同含水量黑土土壤反射率光谱的模拟。  相似文献   

12.
Halloysite nanotube composites covered by silver nanoparticles with the average diameters of 5 nm and 9 nm have been studied by methods of optical spectroscopy of reflectance/transmittance and Raman spectroscopy. It has been established that silver significantly increases the light absorption by nanocomposites in the range of 300 to 700 nm with a maximum near 400 nm, especially for the samples with the nanoparticle size of 9 nm, which is explained by plasmonic effects. The optical absorption increases also in the long-wavelength spectral range, which seems to be due to the localized electronic states in an alumosilicate halloysite matrix after deposition of nanoparticles. Raman spectra of nanocomposites reveal intense scattering peaks at the local phonons, whose intensities are maxima for the samples with the silver nanoparticle sizes of 9 nm, which can be caused by plasmonic enhancement of the light scattering efficiency. The results show the ability to use halloysite nanotube nanocomposites in photonics and biomedicine.  相似文献   

13.
The optical characteristics of skin samples are experimentally studied ex vivo and in vitro at different storage conditions. The experiments are performed on a Cary-2415 spectrophotometer in the spectral range 400–700 nm. Based on the measured diffuse reflectance and total transmittance spectra, the spectra of the absorption and reduced scattering coefficients are calculated in terms of the inverse adding-doubling method. It is shown that the method of storage of samples mainly affects the reduced scattering coefficient of biotissue. Thus, upon storage of skin in an isotonic solution and in its absence, the reduced scattering coefficient increases ∼1.5 and ∼2 times, respectively, compared to the value of this parameter for the intact sample. The differences in the absorption spectra of ex vivo samples and samples stored under different conditions are the most noticeable in the absorption range of blood and are significant above 600 nm.  相似文献   

14.
水源性病原菌污染会引发多种疾病,严重危害人类健康和公共卫生安全。水源性病原菌检测对人类医疗保健、水安全保障和疾病诊断等具有重要的意义。常规水源性病原菌检测技术,如人工培养法、分子生物法和免疫学法,其测量结果准确、有效,但样品预处理繁琐且费时,不利于病原菌实时在线检测。光谱检测技术以非侵入式获取病原菌发射、散射或吸收光谱特征,能够确定病原菌性质、结构和含量等信息。由于该技术具有易于操作、快速、便携、无损和便于实时监测等优点,在环境监测、生物分析中具有广泛的应用前景。文章介绍了现有水源性病原菌检测技术及其优缺点,指出开展病原菌快速、高效检测的必要性;讨论了光谱检测技术原理及数据分析方法,重点综述了紫外可见光谱、荧光光谱、红外光谱、拉曼光谱和太赫兹光谱在水源性病原菌检测的工作原理和研究进展;最后总结了各技术的优缺点。提出了光谱技术在病原菌检测的实际应用中面临的挑战及应对策略,为进一步发展基于光谱技术的水源性病原菌的快速检测提供参考。  相似文献   

15.
沉积岩石的强度往往会受到水的影响,含水量不同其影响程度也不相同。因此,沉积岩石的含水量测定对于后续评估其物理力学特性具有重要的价值。在岩石含水量测定方面,传统的方法往往费时、费力,而且破坏了工程结构的完整性。近红外光谱分析技术是一种非常有潜力的方法,具有实时、无损等优点。基于近红外光谱分析技术对砂岩的光谱特征以及含水量的反演进行了研究。首先,通过室内试验获取了砂岩试样不同饱和度的近红外光谱曲线;然后,对原始光谱曲线进行了异常曲线剔除以及一阶导数预处理,消除噪声、环境等因素的影响;其次,对R1(1 400 nm)和R2(1 900 nm)附近的两个吸收峰进行光谱特征变量提取以及归一化处理,消除量纲和域值的影响;接着,基于最大信息系数对提取的光谱特征变量进行分析和筛选;最后,基于筛选后的光谱特征变量采用自行搭建的BP神经网分类器对砂岩的含水量进行了反演。结果表明:(1)含水砂岩的近红外光谱吸收曲线在1 400和1 900 nm附近有着明显的吸收峰,位于1 400 nm附近的吸收峰,谱带比较宽缓,位于1 900 nm附近的吸收峰,谱带比较尖锐;随着含水量的增加,近红外光谱曲线在1 400和1 900 nm附近吸收峰的吸收强度也在增加,具有明显的正相关性,可作为砂岩含水量分析、反演的主要谱段。(2)根据计算的最大信息系数值,1 400 nm附近的峰高与含水量的相关性最强,同样1 900 nm附近的峰高与含水量的相关性最强;1 400 nm附近的峰面积、峰高和1 900 nm附近的峰高、峰面积、半高宽、右肩宽,共6个光谱特征变量,其最大信息系数值>0.9,可作为BP神经网络反演砂岩含水量的特征变量。(3)利用最大信息系数筛选出1 400和1 900 nm附近两个吸收峰的特征变量进行BP神经网络建模,所建立的砂岩含水量反演模型训练集准确率为90.3%,测试集的准确率为83.9%,说明基于近红外光谱分析技术砂石含水量的反演方法是可行的。  相似文献   

16.
退火对电子束热蒸发Al2O3薄膜性能影响的实验研究   总被引:5,自引:2,他引:3       下载免费PDF全文
 用电子束热蒸发方法镀制了Al2O3材料的单层膜,对它们在空气中进行了250~400 ℃的高温退火。对样品的透射率光谱曲线进行了测量,计算了样品的消光系数、折射率和截止波长。通过X射线衍射仪(XRD)测量分析了薄膜的微观结构,采用表面轮廓仪测量了样品的表面均方根粗糙度。结果发现随着退火温度的提高光学损耗下降,薄膜结构在退火温度为400 ℃时仍然为无定形态,样品的表面粗糙度随退火温度的升高而增加。引起光学损耗下降起主导作用的是吸收而不是散射,吸收损耗的下降主要是由于退火使材料吸收空气中的氧而进一步氧化,从而使薄膜材料的非化学计量比趋于正常。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号