首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
提出了一种消除激光化学诱导液相腐蚀晶体取向影响的新方法———两步腐蚀法。激光化学液相两步腐蚀法实质上是加长非晶向方向图形的腐蚀时间,保证与晶向方向腐蚀程度一致。实验结果表明,晶体取向对激光化学诱导液相腐蚀图形有较大的影响;两步腐蚀法可以有效地消除晶体取向影响,得到需要的图形;与国内外普遍采用的表面抗蚀膜掩蔽和激光光强分布调节等方法相比,具有可以处理内部晶向影响,操作简单,设备要求低等特点,两步腐蚀法可以有效地克服常规方法的诸多弊端,达到消除晶向影响的目的,在特殊结构光电器件和光电集成中具有广泛的应用前景。  相似文献   

2.
为实现基于InP/InGaAsP材料的二维光子晶体结构低损伤、高各向异性的干法刻蚀,研究了对InP材料基于Cl2/BCl3气体的感应耦合等离子体刻蚀. 从等离子体轰击使衬底升温的角度分析了刻蚀机理,发现离子轰击加热引起的侧蚀与物理溅射在侧壁再沉积之间处于平衡时可以得到高各向异性刻蚀,平衡点将随ICP功率增高而向偏压减小方向移动,从而在近203 V偏压下得到陡直的侧壁. 在优化气体组分后,成功实现了光子晶体结构高各向异性的低偏压刻蚀. 关键词: 光子晶体 InP/InGaAsP 感应耦合等离子体 2/BCl3')" href="#">Cl2/BCl3 低偏压刻蚀  相似文献   

3.
Surface morphologies of the laser-etched silicon were studied as a function of the laser power densities. Scanning electron microscope (SEM) results show that different kind of microstructures develop. Pores like structures are formed at low laser power density and pillar like structures are obtained at higher laser power density. It is the etching rate, which is responsible for the surface morphology reconstructions. Etching rate was found to be a function of the laser power density. Atomic force microscope (AFM) results reveal that macro and microsurface morphology reconstructions take place simultaneously as a result of increasing etching rate. Macrosurface morphology reconstruction takes place on the silicon wafer surface and the microsurface morphology reconstruction takes place inside the pore wall.  相似文献   

4.
二氧化钛(Titatium Dioxide,简称TiO2)晶体在中能重离子辐照时表面会出现肿胀效应, 肿胀高度与入射离子的电子能损和辐照注量有关。 辐照后的TiO2在一定条件下能够被氢氟酸溶液化学蚀刻,化学蚀刻的电子能损阈值为8.2keV/nm,未辐照TiO2呈现几乎零蚀刻率。要达到饱和蚀刻深度,辐照离子的注量必须大于或等于1×1013ions/cm2。采用离子辐照的潜径迹理论分析研究了辐照损伤及对化学蚀刻的影响, 快重离子辐照结合化学蚀刻是制备TiO2微结构的有效方法。 There appears volume swelling on the surface of the irradiated rutile TiO2 crystal and the volume swelling is affected by the ion fluence and the electronic stopping power. To induce adequate irradiation damage for the chemical etching, the irradiation parameters must fulfill some requirement. There is minimum electronic stopping power for the chemical etching of the irradiated region in TiO2 crystal, which is about 8. 2 keV/nm. If the ion fluence is below 1×1013ions/cm2, the saturated etching depth of the irradiated region in TiO2crystal cannot be reached. The irradiation damage based on latent track formation frame and the theoretical linkage to the etching technique is investigated. It is hopeful to fabricate micro and nano scale structurce in rutile TiO2 crystal by using the ion irradiation and chemical etching technique.   相似文献   

5.
化学处理增强光学材料的抗激光破坏强度   总被引:2,自引:0,他引:2  
李仲伢  程雷  李成富 《光学学报》1999,19(6):56-859
报道了用化学处理方法提高光学材料的抗激光破坏强度的实验结果,化学处理使和K2玻璃的激光损伤阈值分离提高3倍和4倍,对晶体和熔石英的化学处理也得取和较好的工对加固机理作了分析。  相似文献   

6.
The pulsed infrared laser dissociation of NF3 is reported for the first time, and is used to investigate silicon etching. The role played by collision-enhanced multiple-photon absorption and dissociation is considered, with data on the nonlinear decrease of the absorption cross-section with increasing pulse energy and increasing pressure presented. Using an experimental arrangement in which the laser beam is focussed parallel to the surface, the dissociation process induces spontaneous etching of silicon. Fluorinecontaining radicals diffuse from the focal volume to the surface where a heterogeneous chemical reaction occurs. Etching was monitored by use of a quartz-crystal microbalance upon which a thin film of amorphous silicon was deposited. For a surface with no previous exposure to the photolysis products, dissociation causes the formation of a surface layer prior to the onset of etching. X-ray photoelectron spectroscopy demonstrates this to be a fluorosilyl layer possessing a significant concentration of SiF3 and SiF4. In contrast, a surface already thickly fluorinated does not form a thicker layer once laser pulsing commences again. In this case, etching starts immediately with the first pulse. The etch yield dependencies on several parameters were obtained using silicon samples possessing a thick fluorosilyl surface layer. These parameters are NF3 pressure, laser wavenumber, pulse energy, buffer gas pressure, and perpendicular distance from focal volume to surface. Modeling of the etch yield variation with perpendicular distance shows the time-integrated flux of radicals impinging on the surface to be inversely proportional to the distance. Attempts at etching SiO2 under identical conditions were unsuccessful despite the evidence that thin native oxide films are removed during silicon etching.  相似文献   

7.
A quartz crystal microbalance (QCM) has been used to study the KrF* excimer laser-induced etching of titanium by bromine-containing compounds. The experiment consists of focusing the pulsed UV laser beam at normal incidence onto the surface of a quartz crystal coated with 1 m of polycrystalline titanium. The removal of titanium from the surface is monitored in real time by measuring the change in the frequency of the quartz crystal. The dependence of the etch rate on etchant pressure and laser fluence was measured and found to be consistent with a two-step etching mechanism. The initial step in the etching of titanium is reaction between the etchant and the surface to form the etch product between laser pulses. The etch product is subsequently removed from the surface during the laser pulse via a laser-induced thermal desorption process. The maximum etch rate obtained in this work was 6.2 Å-pulse–1, indicating that between two and three atomic layers of Ti can be removed per laser pulse. The energy required for desorption of the etch product is calculated to be 172 kJ-mole–1, which is consistent with the sublimation enthalpy of TiBr2 (168 kJ-mole–1). The proposed product in the etching of titanium by Br2 and CCl3Br is thus TiBr2. In the etching of Ti by Br2, formation of TiBr2 proceeds predominantly through the dissociative chemisorption of Br2. In the case of etching with CCl3Br, TiBr2 is formed via chemisorption of Br atoms produced in the gas-phase photodissociation of CCl3Br.  相似文献   

8.
吴鼎祥 《光子学报》2002,31(6):762-764
用KrF激基激光,在稀释的Cl2气体中对镀有铜膜的印刷板进行微细蚀刻的初期化过程.  相似文献   

9.
戴隆贵  禤铭东  丁芃  贾海强  周均铭  陈弘 《物理学报》2013,62(15):156104-156104
本文介绍了一种简单高效的制备硅纳米孔阵结构的方法. 利用激光干涉光刻技术, 结合干法和湿法刻蚀工艺, 直接将光刻胶点阵刻蚀为硅纳米孔阵结构, 省去了图形反转工艺中的金属蒸镀和光刻胶剥离等必要步骤, 在2英寸的硅 (001) 衬底上制备了高度有序的二维纳米孔阵结构. 利用干法刻蚀产生的氟碳有机聚合物作为湿法刻蚀的掩膜, 以及在干法刻蚀时对样品进行轻微的过刻蚀, 使SiO2点阵图形下形成一层很薄的硅台面, 是本方法的两个关键工艺步骤. 扫描电子显微镜图片结果表明制备的孔阵图形大小均匀, 尺寸可控, 孔阵周期为450 nm, 方孔大小为200–280 nm. 关键词: 激光干涉光刻 纳米阵列 刻蚀 氟碳有机聚合物  相似文献   

10.
Metallographic investigation of the microstructure of sintered Thoria pellets necessitates appropriate surface preparation of these pellets. Conventional etching methods involving either chemical or thermal etching techniques being unsuitable for surface etching of irradiated Thoria fuel, laser-based surface treatment was envisaged as a potential alternative technique. Thoria pellets were subjected to laser surface treatment using a pulsed Nd:YAG laser.Our preliminary studies have successfully demonstrated laser etching of sintered Thoria pellets with good reproducibility, clearly revealing grain structures and well-defined grain boundaries. Detailed parametric investigations determining optimum laser parameters for the process, are presented. Our results on ultra-short laser-based etching of sintered Thoria pellets are also discussed.  相似文献   

11.
Previously, plasma‐enhanced dry etching has been used to generate three‐dimensional GaAs semiconductor structures, however, dry etching induces surface damages that degrade optical properties. Here, we demonstrate the fabrication method forming various types of GaAs microstructures through the combination etching process using the wet‐chemical solution. In this method, a gold (Au)‐pattern is employed as an etching mask to facilitate not only the typical wet etching but also the metal‐assisted chemical etching (MacEtch). High‐aspect‐ratio, tapered GaAs micropillars are produced by using [HF]:[H2O2]:[EtOH] as an etching solution, and their taper angle can be tuned by changing the molar ratio of the etching solution. In addition, GaAs microholes are formed when UV light is illuminated during the etching process. Since the wet etching process is free of the surface damage compared to the dry etching process, the GaAs microstructures demonstrated to be well formed here are promising for the applications of III–V optoelectronic devices such as solar cells, laser diodes, and photonic crystal devices. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Laser-induced maskless etching of III–V compound semiconductors (InSb, GaAs, and InP) in a KOH aqueous solution by irradiation with a focused argon-ion laser has been investigated to obtain high etching rates and aspect ratios of etched grooves. The etching rate at low laser power was found to depend on the carrier density of the sample and its type. With the increase of the laser power, the etching reaction becomes primarily a thermochemical reaction. High etching rates and aspect ratios have been achieved with a single scan of the laser beam. The damage induced by laser wet etching is less than that by laser dry etching, and the damage at the etched side wall is less than that at the etched bottom. Grooves with locally controlled depth and slab structures have been fabricated for application.  相似文献   

13.
This paper reports a study of reactive ion etching (RIE) of n-ZnO in H2/CH4 and H2/CH4/Ar gas mixtures. Variables in the experiment were gas flow ratios, radio-frequency (rf) plasma power, and total pressure. Structural and electrical parameters of the etched surfaces and films were determined. Both the highest surface roughness and highest etching rate of ZnO films were obtained with a maximum rf power of 300 W, but at different gas flow ratios and working pressures. These results were expected because increasing the rf power increased the bond-breaking efficiency of ZnO. The highest degree of surface roughness was a result of pure physical etching by H2 gas without mixed CH4 gas. The highest etching rate was obtained from physical etching of H2/Ar species associated with chemical reaction of CH4 species. Additionally, the H2/CH4/Ar plasma treatment drastically decreased the specific contact and sheet resistance of the ZnO films. These results indicated that etching the ZnO film had roughened the surface and reduced its resistivity to ohmic contact, supporting the application of a roughened transparent contact layer (TCL) in light-emitting diodes (LEDs).  相似文献   

14.
Chemical etching of single-crystal Si in an NF3 atmosphere is performed by continuous irradiation with an Ar+ laser at 514.5 nm. The etching process proves to be a thermally stimulated chemical reaction between solid Si and NF3 gas. The experimental results show how the depth and width of the etched grooves depend on laser power, scan speed, and gas pressure. The etch rates observed may exceed 25 m/s.  相似文献   

15.
感应耦合等离子体刻蚀在聚合物光波导制作中的应用   总被引:1,自引:0,他引:1  
提出了利用感应耦合等离子体(ICP)刻蚀技术提高聚合物光波导器件性能的方法,介绍了ICP刻蚀技术的原理和优点。选取聚甲基丙烯酸甲酯-甲基丙烯酸环氧丙酯(P(MMA-GMA))作为波导材料,采用氧气作为刻蚀气体,研究了ICP参数变化对刻蚀效果的影响。介绍了倒脊形光波导的制备过程,采用改变单一工艺参数的方法,分析了刻蚀效果随时间、功率、压强、气体流量等参数的变化,对参数优化后刻蚀得到的凹槽和平板结构进行了表征。实验结果表明:在天线射频功率为300 W,偏置射频功率为30 W,气体压强为0.5 Pa,氧气流速为50 cm3/min的条件下,可获得侧壁陡直、底面平整的P(MMA-GMA)凹槽结构。  相似文献   

16.
An electrically driven, single-longitudinal-mode GaAs based photonic crystal (PC) ridge waveguide (RWG) laser emitting at around 850 nm is demonstrated. The single-longitudinal-mode lasing characteristic is achieved by introducing the PC to the RWG laser. The triangle PC is etched on both sides of the ridge by photolithography and inductive coupled plasma (ICP) etching. The lasing spectra of the RWG lasers with and without the PC are studied, and the result shows that the PC purifies the longitudinal mode. The power per facet versus current and current-voltage characteristics have also been studied and compared.  相似文献   

17.
Single crystal ferrite has been etched by focused Ar+ laser irradiation in a CCl4 gas atmosphere. The etched groove showed cracks due to thermal stresses when samples were etched by a laser vaporization process in a vacuum, while in a CCl4 atmosphere, such cracks were not observed. An etching rate of 68 /s obtained for a thermochemical process by laser irradiation was four orders of magnitude higher than that for a wet chemical etching process. A high aspect (depth-to-width) ratio of up to 10 was obtained for etched grooves. Under specific conditions, bending of the groove and orientation dependence in etching rate were observed.  相似文献   

18.
Rapid fabrication of microhole array structured optical fibers   总被引:1,自引:0,他引:1  
Yang R  Yu YS  Chen C  Chen QD  Sun HB 《Optics letters》2011,36(19):3879-3881
A microhole array in a common single-mode fiber is fabricated by selective chemical etching of femtosecond-laser-induced fiber Bragg grating (FBG), which has a laser-modified region extending from the fiber core to the cladding-air boundary due to laser self-focusing. The shape and size of the orderly microhole on the fiber surface are controlled via changing conditions of FBG fabrication and chemical etching. A simultaneous sensing for surrounding refractive index and temperature is demonstrated by this microhole array FBG through measurement of the transmission power change and Bragg resonant wavelength shift.  相似文献   

19.
Laser-induced etching of polycrystalline Al2–O3TiC material by a tightly-focused cw Ar ion laser has been investigated in a KOH solution with different concentrations. It is found that the KOH concentration can strongly affect the etching quality where low KOH concentration can result in rough and irregular patterns. Laser-induced etching of polycrystalline Al2O3TiC in a KOH solution is found to be a photothermal reaction in which a threshold laser power exists. With an appropriate set of etching parameters, well-defined grooves can be obtained with clean side walls and with an etching rate up to several hundred micrometers per second. The etching behavior is also found to depend on laser scanning direction. It is also found that the grains in the polycrystalline Al2O3TiC material play an important role in the etching dynamics and etching quality. This etching process is believed to be applicable to the formation of a slider surface of magnetic heads in the future.  相似文献   

20.
Laser-induced chemical etching of single-crystalline (100) Si in Cl2 atmosphere has been investigated for continuous Ar+ and Kr+ laser irradiation at around 351 nm, and at 457.9, 488.0, 514.5, and 647.1 nm. For laser irradiances below 105 W/cm2 the etching mechanism is non-thermal, and is based on photo-generated electron-hole pairs within the Si surface and Cl atoms produced within the gas phase. The experimental results are compared with model calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号