首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 542 毫秒
1.
邢思阳  于飞  马杰 《应用化学》2023,(9):1215-1232
电容去离子(Capacitive deionization,CDI)作为一种新兴的水淡化和离子分离方法,由于其离子选择性高、水回收率高和能耗低等优点受到广泛关注。与传统的基于碳电极的CDI相比,新兴的法拉第电极通过离子捕获的法拉第反应,提供了使得CDI的脱盐性能大幅提升的独特机会。而过渡金属基电极由于其高度可逆的法拉第响应,相对较高的导电性以及出色的理论赝电容值等优势,在CDI电极设计领域受到广泛关注。本文系统地归纳和梳理了过渡金属基电极在CDI应用中的材料分类,总结了针对其本征缺陷所进行改性工程,主要包括导电材料耦合、功能结构工程和缺陷工程等,并对其在海水淡化中的性能进行了总结;此外,从离子选择性分离、金属离子去除和营养元素回收等方面介绍了过渡金属基电极在CDI中的特定应用。最后,概述了剩余的挑战和研究方向,为未来的过渡金属基电极的开发与研究提供指导。  相似文献   

2.
电容去离子技术(Capacitive Deionization,CDI)可以通过断电或电极反接方式使盐离子脱附,达到电极再生的目的,实现电极的可循环利用,其在海水淡化处理技术中具有独特的优势,逐渐成为一种缓和淡水资源紧缺和水污染的极具前景的技术手段。近年来,CDI处理技术正在向电极高效、无二次污染方向转变,未来将进一步聚焦碳基电极材料功能化(碳材料,钛碳化物MXenes,掺杂改性石墨烯材料)、装置和工艺设计优化等重要方向。为深入研究CDI海水淡化技术机理,进一步探索CDI方法在实际应用中的潜力,分别对CDI的脱盐机理、电极材料、装置和工艺设计对电吸附效率和性能的研究进展进行了总结,回顾CDI脱盐效果与电极材料、CDI电池装置设计等因素之间的密切关系,并对CDI技术在海水淡化中的研究发展提出展望。  相似文献   

3.
具有离子嵌入/脱嵌能力的离子插层型电容去离子(CDI)电极材料是一类具有很高比容量的新型CDI电极,可以有效改善传统碳材料电极离子存储容量有限、电极易腐蚀的缺点.本文以金属氧化物、过渡金属/碳/氮/碳氮化物(MXenes)、钠超离子导体(NASICON)型磷酸盐材料等为分类,综述了近几年具有代表性的基于离子嵌入/脱嵌的...  相似文献   

4.
电容去离子(CDI)技术是一种新型的海水淡化技术,因其具有环境友好、操作简单和能耗低等优势而受到广大研究者的关注。在CDI技术中,电吸附的性能与装置的构型有着密切的联系。本文综述了目前常见的几种CDI装置,包括膜电容去离子(MCDI)、流动电极电容去离子(FCDI)、杂化电极电容去离子(HCDI)、反式电极电容去离子(i-CDI)以及脱盐电池(DB),对这几种装置的发展历程和装置构型进行介绍,最后,对CDI的装置构型在未来的研究发展方向进行了展望,以期为CDI装置在电脱盐领域的研究和应用提供参考。  相似文献   

5.
Lei WANG  Fei YU  Jie MA 《物理化学学报》2017,33(7):1338-1353
电容去离子(CDI)是一种通过静电力作用将离子从水中去除的技术,电极是整个装置中为最为核心的部件,石墨烯因具有优异的导电性和巨大的比表面积等优势成为当前CDI电极材料的研究热点之一。目前对于CDI石墨烯电极的研究主要集中于石墨烯电极的合成,然而有关CDI性能与石墨烯电极制作工艺及电极材料自身结构之间的关系,缺少相关综述。本文系统介绍了CDI的基本原理与性能指标,综述了石墨烯电极材料的研究进展与电极制作工艺,重点分析、归纳和总结了石墨烯材料的特性(孔隙结构、导电性、亲疏水性)对CDI性能的影响,最后对CDI中石墨烯电极材料今后的发展进行了总结和展望。  相似文献   

6.
杨祥龙  汪圣尧  陈婷  杨楠  江开  汪佩  李淑  丁星  陈浩 《催化学报》2021,42(6):1013-1023,中插37-中插45
开发具有高量子效率的半导体光催化材料是极具前景的解决能源短缺和环境污染问题的策略.在已报道的诸多光催化材料中,超薄二维(2D)材料表现突出,凭借其高效的载流子分离传输性能备受研究者的青睐.然而,苛刻的合成条件、缺乏表面活性位点等问题制约了其应用.因此,温和可控地合成具有大量活性位点的原子层厚2D材料具有重要的意义.作为典型的Aurivillius氧化物,Bi2WO6具有独特的层状晶体结构和合适的能带位置;另一方面,其表面Bi?O键的能量较低,氧原子在缺氧条件下经热处理容易逸出,进而产生氧空位.已知氧空位引入是调节半导体能带组成和电子结构的有效手段,不仅能改善其光电性能,而且能提供反应活性位点;因此,Bi2WO6是设计合成具有大量活性位点(氧空位)的原子层厚2D材料的理想平台.基于此,本文拟开发温和可控的合成策略,制备表面相对干净的含氧空位原子层厚Bi2WO6材料,并将其用于大气污染物NO的氧化去除.本文首先通过理论计算预测了卤素离子在调控Bi2WO6晶体生长和表面氧空位引入方面的作用,发现卤素离子尤其是Cl-不仅能减小原子层厚Bi2WO6的表面能(γ),使其稳定存在;而且能降低Bi2WO6(001)晶面上氧空位生成能(ΔE).受此启发,我们设计了Cl-辅助的溶剂热法,成功制备了含表面氧空位的原子层厚Bi2WO6材料;并利用高分辨透射电镜技术、X射线光电子能谱等考察了Cl-的存在形式,及其调控Bi2WO6晶体生长和表面氧空位形成的机理:Cl-因为静电作用吸附在[Bi2O2]2+层上,一方面抑制Bi2WO6原子层堆积;另一方面,Cl-与[Bi2O2]2+层上Bi原子成键,削弱相邻的Bi?O键,利于O原子逸出形成表面氧空位.在此基础上,将设计合成的含氧空位的原子层厚Bi2WO6材料用于空气污染物NO的光催化去除.结果表明,Cl-辅助合成的BWO-Cl可见光催化去除NO的效率高达64%;且其氧化NO至NO3?的选择性为98%.为了进一步分析BWO-Cl在NO氧化反应中的高活性和高选择性的原因,进行了理论计算与光电化学测试、活性物种分析、原位漫反射红外光谱(in-situ DRIFTs)等表征.结果表明,反应的高活性源于材料原子层厚2D结构及其表面丰富的氧空位对光电性质的改善;高选择性则归因于氧空位增强了Bi2WO6吸附活化O2为?O2?的能力,促使NO沿着热力学有利的路径氧化至NO3?.该工作初步展示了卤素离子在调控Bi2WO6晶体生长及表面氧空位引入方面的重要作用,对设计合成高活性的原子层厚2D材料具有指导意义;与此同时,材料在NO氧化方面展现出的高活性与高选择性也为构建高效的NO去除体系提供了新思路.  相似文献   

7.
离子选择性电极是电化学传感器中重要的研究方向之一.随着科学的进步和发展,传统液接式离子选择性电极显示出越来越多的弊端,因此,人们尝试研制全固态的离子选择性电极.经过了数10年的研究,其已经初步应用到临床化验、环境监测以及工业分析等领域.本文根据固态转接层材料的离子-电子转移原理的不同,将全固态离子选择性电极分为:双电层电容型全固态离子选择性电极、赝电容型全固态离子选择性电极以及双电层电容和赝电容混合型的全固态离子选择性电极,并综述了上述3种不同类型的全固态离子选择性电极的研究进展,阐述了对应的响应机理,并展望了其未来的发展趋势.  相似文献   

8.
谢康俊  张树鹏  高娟娟  宋海欧 《化学通报》2017,80(7):631-636,620
电容去离子(CDI)是近年来新兴的一种脱盐技术,由于其具有节能环保、实用性强等优势而倍受青睐。作为该技术核心的电极吸附材料,应具有高比表面积、良好导电性、亲水性、适宜孔隙结构、优异的稳定性等特点。这将有效保障该CDI器件不仅具有高CDI脱盐效率,而且拥有更强的循环稳定性。本文结合我们前期研究工作,针对吸附电极的制备、结构与性能构效关系的差异,综述了近年来多种功能化电极材料在CDI技术应用中的最新进展。  相似文献   

9.
许佳丽  李原芳 《应用化学》2010,27(8):935-938
利用光散射光谱法研究了高氯酸根和阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)的作用。 在酸性条件下,高氯酸根和CTAB通过静电作用形成离子缔合物,导致体系光散射强度增强。 环境水样中的常见阴离子如Cl-、Br-、ClO3-、NO3-和PO43-等与CTAB单独作用时其光散射强度很弱,而当它们与高氯酸根同时存在时,由于协同作用使体系散射强度发生改变。 以Cl-为例,借助动态光散射测定,初步探讨了体系协同作用的机理。  相似文献   

10.
借助三电极体系, 基于电化学交流阻抗谱图, 提出了一种对已吸附Cl-的活性炭再次吸附一个Cl-弛豫时间的测定方法, 根据弛豫时间确定速率控制步骤 . 研究了阳极电势、 预处理时间和预处理浓度对电化学过程的影响, 基于得到的电化学交流阻抗谱图上的参数, 求出不同条件下电吸附Cl-的弛豫时间及覆盖度. 结果表明, 不同条件下得到的复数平面图均由一个容抗弧和一个感抗弧构成, 分别代表Cl-在阳极上发生电荷转移的过程和 Cl-在活性炭电极上的吸附过程 . 增加阳极极化可有效缩短弛豫时间, 阳极极化时, 弛豫时间为2.0×10-5 s; 增加预处理时间, 弛豫时间逐渐增加, 预处理时间为180 min时, 弛豫时间增加到4.9×10-5 s; 预处理浓度对弛豫时间的影响可忽略. 弛豫时间分析结果表明, Cl-吸附速率比扩散速率小, 吸附是电吸附过程的速率控制步骤. 电极表面的覆盖度较低, 仅有10-4...  相似文献   

11.
MOF衍生金属硒化物由于其有序的碳骨架结构和高导电性,被认为是钠离子电池极具前景的负极材料。它们具有快速的电子/离子输运通道,有利于钠离子的嵌入和脱出。然而,循环过程中的大量体积膨胀会导致结构坍塌。为了解决这个问题,通过表面改性在MOF衍生金属硒化物表面引入了一个二维的还原氧化石墨烯网络,既可以缓解体积变化,又能加速电子转移。实验证实这种策略是有效的,在1 A·g-1下500次循环后,包覆了还原氧化石墨烯的复合材料电极容量保持率提高到了95.2%。相比之下,不含还原氧化石墨烯的容量保留率仅为74.2%。此外,由于还原氧化石墨烯网络和MOF衍生In2Se3协同作用,在0.1 A·g-1下显示出了468 m Ah·g-1的优越容量。而在相同的电流密度下,未包覆还原氧化石墨烯的只产生393 m Ah·g-1的比容量。采用循环伏安法(CV)研究了In2Se3@C/rGO电极的电化学过程,结果表明其具有良好的电化学反应活性...  相似文献   

12.
氢气是一种清洁高效的能源载体,通过海水电解规模化制备氢气能够为应对全球能源挑战提供新的机遇。然而,缺乏高活性、高选择性和高稳定性的理想电极材料是在腐蚀性海水中连续电解过程的一个巨大挑战。为了缓解这一困境,需要从基础理论和实际应用两方面对材料进行深入研究。近年来,人们围绕电极材料的催化活性、选择性和耐腐蚀性进行了大量的探索。本文重点总结了高选择性和强耐腐蚀性材料的设计合成与作用机制。其中详细介绍了多种电极材料(如多金属氧化物、Ni/Fe/Co基复合材料、氧化锰包覆异质结构等)对氧气生成选择性的研究进展;系统论述了各种材料的抗腐蚀工程研究成果,主要讨论了本征抗腐蚀材料、外防护涂层和原位产生抗腐蚀物种三种情况。此外,提出了海水电解过程中存在的挑战和潜在的机遇。先进纳米材料的设计有望为解决海水电解中的氯化学问题提供新思路。  相似文献   

13.
钠离子电池有望取代锂离子电池实现大规模储能应用。然而,储钠负极材料具有较低的初始库伦效率,制约了高比能钠离子电池的开发。预钠化技术被认为是补偿负极活性钠损失、提升电池能量密度的最直接有效的方法,对于钠离子电池的商业化应用具有重要意义。本文全面总结近年来预钠化技术的最新研究进展,包括短接法预钠化、电化学预钠化、钠金属物理预钠化、化学预钠化和正极补钠添加剂等,并从反应原理、安全性、可操作性、处理效率和可放大性等角度分析讨论现有各技术方案的优势及面临的挑战;着重介绍化学预钠化和正极补钠添加剂,这两类最具应用前景的预钠化技术的最新成果,进而从实用化角度深入探讨仍待解决的科学问题和技术难点。本文可为预钠化技术的进一步优化和高比能钠离子电池的开发提供思路。  相似文献   

14.
水系锌离子电池(ZIBs)因安全性高、成本低、环境友好,以及负极锌高的理论容量(820 mAh·g-1)和低的氧化还原电位(-0.76 V vs.SHE)等优点而受到研究者们的广泛关注,有望应用于大规模储能领域,但循环寿命仍是限制其规模化应用的瓶颈之一。通过电解液优化调控策略,可有效抑制正极材料的溶解、结构坍塌和界面副反应等问题,从而提高水系ZIBs的电化学性能。本文综述了电解液调控策略提升水系ZIBs正极材料电化学性能的研究进展,讨论了该策略所解决的具体问题和局限性,并对电解液体系的发展方向进行了展望。  相似文献   

15.
Na-ion batteries (SIBs) are promising alternatives for Li-ion batteries owing to the natural abundance of sodium resources and similar energy storage mechanisms. Although significant progress has been achieved in research on SIBs, there remain several challenges to be addressed. One of the major challenges in the construction of high-performance SIBs is the development of suitable anode materials with a large reversible capacity, high cycling stability, and good rate performance. Alloying anode materials mainly composed of elements from Groups IVA and VA, as well as their alloys, have attracted widespread attention because of their low working voltage, high cost-effectiveness, and large theoretical capacity. Alloying-type anode materials can be alloyed with metallic Na to achieve large reversible capacities, ensuring a high energy density. Antimony is a promising anode material for SIBs owing to its high theoretical specific capacity (660 mAh·g−1, corresponding to the full sodiation Na3Sb alloy), small degree of electrode polarization (~0.25 V), appropriate Na+ deintercalation potential (0.5–0.75 V), low price, and environmental friendliness. However, an important challenge for using Sb-based anode materials is that the high specific capacity is accompanied by large volume changes during cycling. Such changes lead to the pulverization of the active materials and their falling off from the collector, which significantly limit their large-scale application in the field of sodium-ion batteries. Therefore, mitigating the volume expansion issue of Sb-based anode materials in the charge-discharge process is very important for the design of high-performance SIBs. In recent years, researchers have attempted to address this issue by designing special structures to prepare various composites, and substantial progress has been achieved in improving the electrochemical performance of SIBs. In this review, the relationship between the structure and properties of Sb-based materials and their applications in SIBs are presented and discussed in detail. The latest research progress on using Sb-based anode materials for SIBs in redox reaction mechanisms along with their morphology design, structure-performance relationship, etc. have been reviewed. The main objective of this review is to explore the determining factors of the performance of Sb-based anode materials to propose suitable modification strategies for improving their reversible capacity and cycle stability. Finally, future developments, challenges, and prospects of Sb-based anode materials for SIBs are discussed. Despite several challenges, Sb-based materials are very promising anode materials for SIBs with alloying reaction mechanisms. To further improve the large-scale application of Sb-based anode materials, it is necessary to optimize the binder, electrode structure, and electrolyte composition. The combination of in-depth studies on the electrochemical reaction mechanisms and advanced characterization technologies is important for the development and construction of advanced Sb-based anode materials for SIBs. Finally, to achieve extensive large-scale applications, it is necessary to further explore environmentally friendly, low-cost, and controllable synthetic technologies to prepare high-performance Sb-based anode materials. This review provides specific perspectives for the construction and optimization of Sb-based anode materials and suggests scope for future work on Sb-based anode materials, thereby promoting the rapid development and practical application of SIBs.   相似文献   

16.
全固态锂电池因其优异的安全性和高能量密度成为储能领域的重点研究内容。硫化物电解质因其高离子电导率、良好电极/电解质界面兼容性及易加工性,有力推动了硫化物基全固态锂电池的发展。本文首先从实验室研究阶段出发,从正极/电解质界面、硫化物电解质自身及负极/电解质界面三方面阐述了硫化物基全固态锂电池现阶段面临的主要问题,并介绍了相关的解决策略。随后从硫化物基全固态锂电池的实用化生产角度出发,介绍了电极/电解质膜的制膜工艺、软包电池的装配相关问题、高载正极的设计及硫化物电解质的大规模、低成本制备。最后展望了硫化物基全固态锂电池的未来研究方向和发展趋势。  相似文献   

17.
燃料电池作为一种清洁高效的能量转换装置,被认为是构建未来社会可再生能源结构的关键一环。不同于质子交换膜燃料电池(PEMFC),碱性聚合物电解质燃料电池(APEFC)的出现使非贵金属催化剂的使用成为可能,因而受到了日益广泛的关注和研究。APEFC的关键结构是膜电极,主要由聚合物电解质膜和阴阳极(含催化层、气体扩散层)组成,膜电极是电化学反应发生的场所,其优劣直接决定着电池性能的好坏。因此,基于现有的碱性聚合物电解质及催化剂体系,如何构筑更加优化的膜电极结构,使APEFC发挥出更高的电池性能是亟待开展的研究。本文首先通过模板法在碱性聚合物电解质膜的表面构建出有序的锥形阵列,再将具有阵列结构的一侧作为阴极来构筑膜电极,同时,作为对比,制备了由无阵列结构的聚合物电解质膜构筑而成的膜电极,最后对基于两种不同膜电极的APEFC的电化学性能进行了对比研究。实验结果表明,锥形阵列结构可以将APEFC的峰值功率密度由1.04 W·cm-2显著提高到1.48 W·cm-2,这主要归因于在APEFC的阴极侧具有锥形阵列结构的聚合物电解质膜的亲水性的提升和催化剂电化学活性面积的增加。本工作为碱性聚合物电解质燃...  相似文献   

18.
钠离子电池是目前最有前景及可行性的新兴储能候选体系。对于钠离子电池而言,如何实现其电极材料的理性设计及构筑,是重要的科学问题。本文立足于钠离子/电子输运这一核心问题,从固态离子学视角探讨钠离子电池电极材料的设计策略。首先,对于体相电极材料,输运特性的明晰、调控以及缺陷化学模型的建立,是传统电极材料开发的关键。其次,对于纳米电极材料,随着尺寸的减小,电极材料的热力学性质、动力学特性以及钠离子微观储输机制都会发生相应变化,因此从纳米离子学视角,以尺寸效应调控电极材料具有重要的科学价值及现实意义。最后,无论对于体相材料还是纳米材料,从材料的本征输运特性出发,通过电化学电路的设计和构筑来优化电极动力学,可以为钠电电极材料的理性设计及可控制备提供理论指导。我们相信,通过本文系统地对钠离子电池电极材料设计策略的梳理,必将对钠离子电池的开发,提供有意义的指导,并为最终的产业化打下良好的基础。  相似文献   

19.
电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)作为一种原位/非原位的电化学表征技术,在固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)尤其是小尺寸电池的研究中得到了广泛应用,而工业大尺寸电池的EIS研究较少且大多基于小尺寸电池的研究结果。本文对工业尺寸(10 cm × 10 cm)阳极支撑平板式SOFC搭建了EIS测试系统,并改变电池运行温度、阳极/阴极气体组分,对该电池进行了系统的EIS测试,而后采用不基于先验假设的弛豫时间分布法(Distribution of Relaxation Times,DRT)对EIS数据进行解析。通过比较分析不同条件下的DRT结果,揭示了DRT中各特征峰与电池中具体电极过程的对应关系。与小尺寸电池相比,由于大尺寸电池的有效面积较大且入口流量较小,气体转化过程在大尺寸电池中不容忽视。本文通过解析EIS实现了对工业大尺寸SOFC单电池中各项电极过程的分辨,该方法及结果能够进一步应用于SOFC原位表征、在线监测以及衰减机理等相关研究。  相似文献   

20.
我们通过包覆炭化的方法制备得到了石墨烯包覆的天然球形石墨(G/SG)材料,并使用扫描电子显微镜、X射线衍射仪以及多种电化学测试手段考察了不同石墨烯含量的复合材料的形貌结构及电化学性能。我们发现,在不添加乙炔黑(AB)的情况下,G/SG复合材料表现出较高的首次库伦效率,很好的循环稳定性和高倍率性能。当石墨烯包覆量为1%时,材料50次循环后的可逆容量可与添加10%AB的天然石墨电极(SG)等同;当石墨烯包覆量为2.5%时,材料的比容量完全高于添加10%AB的石墨电极。材料电化学性能的改善归因于石墨烯的包覆。一方面,石墨烯的柔软可变性可以保证天然石墨颗粒在充放电过程中的结构完整性,从而有效改善材料的循环稳定性;另一方面,石墨烯的存在提高了电极的导电性,促进更好导电网络的形成。因此,石墨烯包覆天然球形石墨材料中,石墨烯不仅是活性物质,也发挥导电剂的作用。当添加5%的乙炔黑时,在50 mA·g-1电流循环50次后,5%G/SG电极的可逆容量从381.1 mAh·g-1提高到404.5 mAh·g-1,在1 A·g-1电流时可逆容量从82.5 mAh·g-1提高到101.9 mAh·g-1,这表明G/SG电极仍然需要乙炔黑导电剂。乙炔黑颗粒填充在复合材料的空隙中,通过点接触的形式连接到G/SG颗粒,与石墨烯协同作用形成了更加有效的导电网络。尽管石墨烯包覆和乙炔黑添加对天然石墨电极具有积极的影响,例如增加了天然石墨电极的导电性和储锂性能(包括可逆容量,倍率性能和循环性能),但随着石墨烯或乙炔黑的增加,电极密度通常会降低。因此,在实际应用中应考虑石墨负极材料的质量和体积容量的平衡。这些结果对天然石墨的进一步商业应用具有重要意义。我们的工作为天然石墨电极在锂电池中的电化学行为提供了一种新的认识,并且有助于制备更高性能的负极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号