首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
熊岳城  于飞  马杰 《物理化学学报》2022,38(5):2006037-31
电容去离子技术(Capacitive deionization,CDI)是一种新兴的脱盐技术,通过在电极两端施加较低的外加电场除去水中的带电离子和分子,由于其较低的能耗和可持续性而备受关注。基于储能电池领域近年来的迅猛发展,CDI电极材料实现了从以双电层作用机理为代表的碳材料到法拉第电极材料的跨越,使得脱盐性能有了大幅度提升。Na+的去除与Cl-的去除同等重要,然而,CDI中针对氯离子高效去除的电极材料研究关注较少。本文从CDI装置的构型演变发展出发,系统地归纳与梳理了CDI中关于脱氯电极材料的分类,对比了不同类型脱氯电极材料的特点,并总结了Cl-去除的机理,分别为基于双电层的电吸附、转化反应、离子插层和氧化还原反应。本文是首篇关于CDI阳极材料的进展综述和展望,为CDI除氯电极的后续研究提供理论基础和研究思路。  相似文献   

2.
电容去离子(CDI)技术是一种新型的海水淡化技术,因其具有环境友好、操作简单和能耗低等优势而受到广大研究者的关注。在CDI技术中,电吸附的性能与装置的构型有着密切的联系。本文综述了目前常见的几种CDI装置,包括膜电容去离子(MCDI)、流动电极电容去离子(FCDI)、杂化电极电容去离子(HCDI)、反式电极电容去离子(i-CDI)以及脱盐电池(DB),对这几种装置的发展历程和装置构型进行介绍,最后,对CDI的装置构型在未来的研究发展方向进行了展望,以期为CDI装置在电脱盐领域的研究和应用提供参考。  相似文献   

3.
具有离子嵌入/脱嵌能力的离子插层型电容去离子(CDI)电极材料是一类具有很高比容量的新型CDI电极,可以有效改善传统碳材料电极离子存储容量有限、电极易腐蚀的缺点。本文以金属氧化物、过渡金属/碳/氮/碳氮化物(MXenes)、钠超离子导体(NASICON)型磷酸盐材料等为分类,综述了近几年具有代表性的基于离子嵌入/脱嵌的电极材料的设计及在CDI方面的应用,以期深入理解构效关系,开发出性能更强的电极材料。  相似文献   

4.
谢康俊  张树鹏  高娟娟  宋海欧 《化学通报》2017,80(7):631-636,620
电容去离子(CDI)是近年来新兴的一种脱盐技术,由于其具有节能环保、实用性强等优势而倍受青睐。作为该技术核心的电极吸附材料,应具有高比表面积、良好导电性、亲水性、适宜孔隙结构、优异的稳定性等特点。这将有效保障该CDI器件不仅具有高CDI脱盐效率,而且拥有更强的循环稳定性。本文结合我们前期研究工作,针对吸附电极的制备、结构与性能构效关系的差异,综述了近年来多种功能化电极材料在CDI技术应用中的最新进展。  相似文献   

5.
电容去离子技术(Capacitive Deionization,CDI)可以通过断电或电极反接方式使盐离子脱附,达到电极再生的目的,实现电极的可循环利用,其在海水淡化处理技术中具有独特的优势,逐渐成为一种缓和淡水资源紧缺和水污染的极具前景的技术手段。近年来,CDI处理技术正在向电极高效、无二次污染方向转变,未来将进一步聚焦碳基电极材料功能化(碳材料,钛碳化物MXenes,掺杂改性石墨烯材料)、装置和工艺设计优化等重要方向。为深入研究CDI海水淡化技术机理,进一步探索CDI方法在实际应用中的潜力,分别对CDI的脱盐机理、电极材料、装置和工艺设计对电吸附效率和性能的研究进展进行了总结,回顾CDI脱盐效果与电极材料、CDI电池装置设计等因素之间的密切关系,并对CDI技术在海水淡化中的研究发展提出展望。  相似文献   

6.
Lei WANG  Fei YU  Jie MA 《物理化学学报》2017,33(7):1338-1353
电容去离子(CDI)是一种通过静电力作用将离子从水中去除的技术,电极是整个装置中为最为核心的部件,石墨烯因具有优异的导电性和巨大的比表面积等优势成为当前CDI电极材料的研究热点之一。目前对于CDI石墨烯电极的研究主要集中于石墨烯电极的合成,然而有关CDI性能与石墨烯电极制作工艺及电极材料自身结构之间的关系,缺少相关综述。本文系统介绍了CDI的基本原理与性能指标,综述了石墨烯电极材料的研究进展与电极制作工艺,重点分析、归纳和总结了石墨烯材料的特性(孔隙结构、导电性、亲疏水性)对CDI性能的影响,最后对CDI中石墨烯电极材料今后的发展进行了总结和展望。  相似文献   

7.
采用液相还原法制备了石墨烯水/气凝胶三维石墨烯宏观材料,并将其作为电极应用于电容去离子中,以氯化钠作为研究对象,研究三维石墨烯凝胶电极在电容去离子中的性能.利用扫描电子显微镜、循环伏安曲线和X射线光电子能谱等多种手段考察了电极的形貌结构及特性.对比了石墨烯水凝胶与气凝胶电极应用于去离子电容中的性能差异.结果表明,水凝胶电极相对于气凝胶电极具有较好的去离子性能;采用压片法进一步对石墨烯水凝胶电极材料进行优化,结果表明,压片水凝胶、水凝胶和气凝胶3种电极材料在去离子电容中均具有较好的电容去离子效果,其电吸附容量从大到小的顺序:压片水凝胶水凝胶气凝胶.石墨烯水凝胶作为电极材料在电容去离子中具有较好的应用前景.  相似文献   

8.
离子选择性电极是电化学传感器中重要的研究方向之一.随着科学的进步和发展,传统液接式离子选择性电极显示出越来越多的弊端,因此,人们尝试研制全固态的离子选择性电极.经过了数10年的研究,其已经初步应用到临床化验、环境监测以及工业分析等领域.本文根据固态转接层材料的离子-电子转移原理的不同,将全固态离子选择性电极分为:双电层电容型全固态离子选择性电极、赝电容型全固态离子选择性电极以及双电层电容和赝电容混合型的全固态离子选择性电极,并综述了上述3种不同类型的全固态离子选择性电极的研究进展,阐述了对应的响应机理,并展望了其未来的发展趋势.  相似文献   

9.
超级电容器因其在电动车和便携式设备上巨大的应用潜力而受到广泛关注. 电极材料是超级电容器的关键组成部分, 决定了超级电容器性能的好坏. 近来大量研究以碳材料和过渡金属化合物作为电极材料. 然而, 碳材料电容值极小与过渡金属化合物导电性和稳定性差, 极大地限制了它们在超级电容器中的应用. 本综述重点介绍了我们课题组近年来在设计、可控制备及优化碳材料与过渡金属氧/氮化物电容性能的相关研究工作, 并讨论了材料构效关系及其调控机理. 最后对碳材料和过渡金属化合物作为电极材料的日后研究进行了展望.  相似文献   

10.
张巍  谢康  汤云灏  秦川  成珊  马英 《化学进展》2022,34(12):2638-2650
选择性催化还原(SCR)技术是目前应用最广泛的工业脱硝技术,研发具有优良活性和抗毒化性能的催化剂体系是研究学者关注的重点。过渡金属氧化物和金属有机骨架(MOF)材料因其优良的氧化还原性能在脱硝领域受到了广泛关注和研究,且研究学者发现将过渡金属氧化物与MOF材料结合能够进一步提高催化剂的脱硝活性。本文综述了近年来主要应用于NH3-SCR反应的系列单过渡金属基MOF脱硝催化剂和复合过渡金属基MOF脱硝催化剂的研究进展,阐述了过渡金属基MOF脱硝催化剂抗水抗硫中毒性能和热稳定性的强化方法,并展望了未来过渡金属基MOF脱硝催化剂的主要研究方向:综合利用不同过渡金属氧化物的特点并结合金属氧化物间的强相互作用,制备得到具有优良脱硝活性、抗水抗硫性能和热稳定性的新型过渡金属基MOF脱硝催化剂,进一步通过实验和仿真模拟相结合制备高效过渡金属基MOF脱硝催化剂以满足工业化需求。  相似文献   

11.
硝酸盐含量的检测对于评价环境中硝酸盐污染和了解生态系统氮循环方面起着非常重要的作用。离子选择性电极因操作简单、选择性好、方便携带、价格低廉等优点被广泛应用于环境样品中硝酸根的测定。本文从离子选择性电极功能材料、电极设计和实际应用三方面阐述了近20年硝酸根离子选择性电极的研究进展,汇总了新合成硝酸根离子载体的选择性性能,从固体接触传导层和离子选择性敏感膜组分角度分析了固体接触式聚合物膜硝酸根离子选择性电极的构建机理,总结了非聚合物膜硝酸根离子选择性电极的发展,并对硝酸根离子选择性电极在环境中的典型应用进行了介绍,以期为水环境和土壤中硝酸根的测定提供技术支持。  相似文献   

12.
余林颇  陈政 《电化学》2017,23(5):533
本文从作者所在的课题组在超级电容器和超级电容电池方向的研究内容为基础,在电极材料和装置层面综述了电容性电化学储能装置的发展. 导电聚合物和过渡金属氧化物分别与碳纳米管复合后的复合物能显著提高前两者作为电容性法拉第储能电极的电容性能. 活性炭和碳黑等一类碳材料则可作为非法拉第储能的电极材料. 通过对超级电容器正负极电容做相应的匹配调整可以提高超级电容器的最大充电电压,从而提高超级电容器的能量容量. 此外,为了与实际设备相匹配,超级电容可以以双极板的方式串联堆积,满足高电压的需求. 超级电容电池作为新一代的电容性电化学储能装置,分别由具有电容性和法拉第电荷储存原理的电极组成,具有高比功率和高比能量的特点,也是近年来的研究热点.  相似文献   

13.
《电化学》2017,(5)
超级电容器因其在电动车和便携式设备上巨大的应用潜力而受到广泛关注.电极材料是超级电容器的关键组成部分,决定了超级电容器性能的好坏.近来,大量研究以碳材料和过渡金属化合物作为电极材料.然而,碳材料电容值极小与过渡金属化合物导电性和稳定性差,极大地限制了它们在超级电容器中的应用.本综述重点介绍了作者课题组近年来在设计、可控制备及优化碳材料与过渡金属氧/氮化物电容性能的相关研究工作,并讨论了材料构效关系及其调控机理.最后,对碳材料和过渡金属化合物作为电极材料的日后研究进行了展望.  相似文献   

14.
《电化学》2017,(5)
本文从作者所在的课题组在超级电容器和超级电容电池方向的研究内容为基础,在电极材料和装置层面综述了电容性电化学储能装置的发展.导电聚合物和过渡金属氧化物分别与碳纳米管复合后的复合物能显著提高前两者作为电容性法拉第储能电极的电容性能.活性碳和碳黑等一类碳材料则可作为非法拉第储能的电极材料.通过对超级电容器正负极电容做相应的匹配调整可以提高超级电容器的最大充电电压,从而提高超级电容器的能量容量.此外,为了与实际设备相匹配,超级电容可以以双极板的方式串联堆积,满足高电压的需求.超级电容电池作为新一代的电容性电化学储能装置,分别由具有电容性和法拉第电荷储存原理的电极组成,具有高比功率和高比能量的特点,也是近年来的研究热点.  相似文献   

15.
传统超级电容器受低能量密度的限制,在当今器件研发中需更加关注电极材料结构-组成-性能研究。 本文总结了新型赝电容器的发展历程及其研发过程中存在的挑战与解决措施,着重从胶体离子超级电容器电极材料等新型的电极材料和氧化还原电解质两个方面进行综述。 原位合成的胶体离子超级电容器电极材料比非原位合成的电极材料具有更高的反应活性,并且以近似离子的状态存在,有效增加了电极材料的比容量。 氧化还原电解质的使用在不改变电极材料的前提下,进一步提高了超级电容器的能量密度。 初步介绍了新型锂离子电容器。 锂离子电容器同时使用电池型材料和电容型材料,可提高其能量密度。 依据当前超级电容器的研发现状,未来有望将电池材料和电容器材料结合使用,进而形成电池电容器或电容电池,使其同时具有高的能量密度和功率密度。  相似文献   

16.
金属离子的识别和选择性研究仍是当前水体金属离子污染分析中一大挑战。离子印迹材料具有制备简单、结构稳定、识别性强、吸附速率快、吸附容量大和易回收等特点,在离子分离、富集和传感识别等领域受到广泛的关注。在过去的研究中,有两方面重点内容始终贯穿离子印迹材料的发展历程。一是印迹材料的制备过程的优化,二是识别性能以及识别机理的研究。本文按照时间轴的顺序对离子印迹材料的发展进行综述,并重点归纳了制备过程和识别机理的研究进展。另外对现阶段离子印迹材料在识别吸附重金属中的应用进行了总结和展望。  相似文献   

17.
离子液体作为酶催化反应的介质正越来越多的受到关注,因为与传统有机溶剂和水相比,酶在离子液体中表现出了更好的活性、热稳定性、立体选择性、对映体选择性和可循环性。本文综述了近几年来脂肪酶、氧化还原酶、蛋白酶在离子液体中的催化反应。  相似文献   

18.
电解液离子与炭电极双电层电容的关系   总被引:3,自引:0,他引:3  
以酚醛树脂基纳米孔玻态炭(NPGC)为电极, 通过微分电容伏安曲线的测试, 研究了水相体系电解液离子与多孔炭电极双电层电容的关系. 结果表明, 稀溶液中, 多孔炭电极的微分电容曲线在零电荷点(PZC)处呈现凹点, 电容降低, 双电层电容受扩散层的影响显著;若孔径小, 离子内扩散阻力大, 电容下降更为迅速, 扩散层对双电层电容的影响增大. 而增大炭材料的孔径或电解液浓度, 可明显减弱甚至消除扩散层对电容的影响. 炭电极的单位面积微分电容高, 仅表明孔表面利用率高, 如欲获得高的电容量, 还要有大的比表面积. 离子水化对炭电极的电容产生不利影响, 选用大离子和增大炭材料的孔径, 可有效降低离子水化对炭电极电容性能的影响.  相似文献   

19.
聚吡咯以其制备简单、掺杂可逆、环境友好、导电率高、比电容大、具有良好的成膜性而备受关注。特别是在作为超级电容器、二次电池等换能设备电极材料领域中前景广阔。文章简略地介绍了超级电容器的双电层电容和法拉第赝电容产生的机理,概述了近年来聚吡咯与金属氧化物、炭材料等通过化学法、电化学法以及界面化学法等新型手段制备聚吡咯电极的研究进展。  相似文献   

20.
一种新的硫酸根离子敏感电极   总被引:6,自引:0,他引:6  
探索新的材料制备离子敏感电极,研究这些电极的响应特性和响应机理,是离子电极研究的一个新方向['-".硫酸根离子敏感电极一直是离子电极研究中的一个难点·本文采用电沉积方法,在铜、钻、玻璃碳和低碳钢体表面沉积了Ni-P系非晶合金硫酸根离子敏感电极,电极对硫酸根离子在卫X10-'~IX10-'mol/L浓度范围内呈Nernst响应,检测下限可达4X10'mol/L,具有良好的重现性和稳定性.该硫酸根离子电极对常见阴离子具有良好的选择性,与迄今所报道的SO广离子敏感电极比较显示了较优异的特性.1实验部分将金属铜(99%,4-5mm)、金属钻…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号