首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
通过可控/活性正离子开环聚合设计合成一系列不同分子量的聚四氢呋喃活性链,利用聚二甲基硅氧烷(PDMS)的双端胺基与反应制备PDMS与聚四氢呋喃(PTHF)的新型三嵌段共聚物(PTHF-b-PDMS-b-PTHF).通过FTIR与1H-NMR表征产物化学结构及共聚组成,由TGA、DSC及DMA研究嵌段共聚物热性能与动态力学性能,采用TEM和in situ POM观察嵌段共聚物的微观形态与结晶形态.常温下表征共聚物材料自修复性能及37°C下表征其抗菌性能.结果表明:采用体系引发四氢呋喃可控/活性正离子开环聚合制备预期分子量的,进一步与双端胺基官能化PDMS反应,反应效率可达95%左右,设计合成出一系列不同共聚组成的PTHF-b-PDMS-b-PTHF三嵌段共聚物.该共聚物呈现双连续微观相分离结构和结晶现象,随着PTHF链段的增长,结晶速率加快;与相同分子量均聚PDMS和PTHF相比,所制备的三嵌段共聚物的热稳定性明显提高;三嵌段共聚物链中存在2个―NH―基团,在分子链间形成氢键导致产生物理交联及聚合物网络,使材料具有较好的弹性、柔韧性和强度,同时具有自修复特性,将材料完全切开,常温下24 h后断面发生良好愈合,在应力作用下可被拉伸至原长的1.5倍;原位制备的三嵌段共聚物/银纳米复合材料对大肠杆菌表现出良好的抗菌性能.基于可控/活性正离子开环聚合方法合成的PTHF-b-PDMS-b-PTHF三嵌段共聚物/银纳米复合材料兼具PTHF、PDMS及纳米银的优良性能,在生物医用材料领域具有应用前景.  相似文献   

2.
采用烯丙基溴官能化聚异丁烯/高氯酸银体系引发四氢呋喃活性正离子聚合制备聚谷氨酸苄酯-g-(聚四氢呋喃-b-聚异丁烯)/银纳米复合材料(PBLG-g-(PTHF-b-PIB)/Ag).研究接枝密度对该纳米复合材料表面组成、形貌及自组装行为的影响,进一步探究纳米复合材料中银的含量、分布、晶型及存在形态,以布洛芬(IBU)作为模拟药物,研究接枝共聚物中接枝密度和平均支链长度对纳米复合材料载药释药行为的影响,通过抑菌圈法和MTT法研究纳米复合材料的抗菌性和细胞毒性.结果表明:通过烯丙基溴官能化聚异丁烯大分子引发四氢呋喃活性正离子开环聚合,可以原位制备不同接枝密度和不同平均支链长度的PBLG-g-(PTHF-b-PIB)/Ag纳米复合材料,其中银的质量含量在0.25%~3.9%之间,与其理论含量基本相吻合,银颗粒以聚集体形态存在,尺寸为5~10 nm,晶型为面心立方结构;该纳米复合材料在四氢呋喃/正己烷(4/1,V/V)混合介质中自组装形成胶束,胶束数目随接枝密度增加而减少,但尺寸增大;随接枝共聚物中接枝密度和纳米银含量增加,纳米复合材料的疏水性增加;随接枝共聚物中接枝密度增加,纳米复合材料表面形貌可由球形结构逐渐转化为双连续相结构;纳米复合材料的载药微球可以通过接枝共聚物中主链PBLG的空心螺旋结构、酰胺键及PTHF支链的醚键结构显示三重载药特性,载药量和累积释药量均随着接枝共聚物中接枝密度或PTHF链段长度增加而增加,且在37oC下的释药率是25oC下释药率的3倍左右.该纳米复合材料的抗菌性能随纳米银含量增加而增加,当纳米银含量为1.48%时,该纳米复合材料1周后细胞存活率为97.7%,即无细胞毒性.  相似文献   

3.
通过可控/活性离子聚合方法设计合成一系列不同共聚组成的聚谷氨酸苄酯-g-(聚四氢呋喃-b-聚异丁烯)的新型嵌段接枝共聚物,即PBLG-g-(PTHF-b-PIB),研究共聚物中支链(PTHF-b-PIB)长度及接枝密度对主链PBLG玻璃化转变温度、α-螺旋二级结构及其转变的影响,研究支链中PTHF链段长度对其双端受限的玻璃化转变及凝聚态结构的影响.结果表明:PBLG-g-(PTHF-b-PIB)共聚物中刚性主链保持α-螺旋二级结构;随着支链长度增加或接枝密度增加,主链PBLG的α-螺旋二级结构特征峰逐渐减弱,玻璃化转变温度逐渐提高,α-螺旋结构发生转变的焓值逐渐增大;在确定接枝密度的情况下,随着支链中PTHF链段长度增加,共聚物中双端受限的PTHF链段结晶逐渐增强,结晶熔融温度及熔融焓均增加;在确定支链中PTHF链段长度的情况下,随着接枝密度增大,支链间链段相互排斥,PTHF链段结晶逐渐减弱.  相似文献   

4.
刘晓  李晟冉  吴一弦 《高分子学报》2017,(11):1753-1761
通过将烯丙基溴/高氯酸银引发体系引发四氢呋喃活性正离子开环聚合与"grafting onto"合成方法相结合,原位制备了不同接枝密度和接枝链长度的新型聚醋酸乙烯酯-g-聚四氢呋喃接枝共聚物(PVAc-g-PTHF)及其与纳米银(Ag)的复合材料.采用傅里叶变换红外光谱(FTIR)、核磁共振波谱(1H-NMR)和多角度激光光散射-黏度-凝胶渗透色谱仪(MALLS-VIS-GPC)分别表征了该接枝共聚物的化学结构、共聚组成、分子量、分子量分布、接枝支链数目及支化度,采用原子力显微镜(AFM)、示差扫描量热分析(DSC)、偏光显微镜(POM)研究了接枝共聚物中接枝支链数目及支链长度对其微观形态、单端受限链段结晶行为的影响,并探讨了该纳米复合材料的抗菌性能.结果表明:所制备的不同支链数目和支链长度的PVAc-g-PTHF/Ag纳米复合材料,均表现出良好的抗菌性能;接枝共聚物PVAc-g-PTHF的重均分子量可达4.52×10~5,分子分子量较窄(M_w/M_n~1.8),支化因子可达0.19.接枝共聚物PVAc-g-PTHF可形成明显的相分离结构,其微观形态与接枝支链数目有关;相比相同分子量的双端不受限的PTHF链,PVAc-g-PTHF接枝共聚物中单端受限PTHF支链的结晶速率明显降低;在确定接枝支链数目的情况下,随着支链中PTHF链段长度增加,其结晶逐渐增强,结晶熔融温度及熔融焓均稍有增加.  相似文献   

5.
<正> 本实验室前项工作曾证明用脂肪二酰氯与高氯酸银引发四氢呋喃(THF)在0—50℃下聚合可形成没有链终止和链转移反应的活性聚合链.为了减少聚丁二醇醚结晶趋势,又制备了双端活性的THF-环氧丙烷无规共聚醚链.本文则通过THF的开环聚合,将一个非“活性”的聚酯转变成为双端活性链,合成了伯胺端基聚丁二醇-聚酯-聚丁二醇遥爪低聚物,并用以增韧环氧树脂.  相似文献   

6.
通过开环聚合(ROP)和原子转移自由基聚合(ATRP)制备了一类新型的两亲性嵌段共聚物——六臂星形聚(ε-已内酯)-b-聚甲基丙烯酸(2-羟乙酯)(6sPCL-b-PHEMA).6sPCL-b-PHEMA通过三步反应合成:(1)双季戊四醇开环聚合ε-己内酯的合成6sPCL;(2)以2-溴异丁基酰溴封端星形聚合物制备大分...  相似文献   

7.
将活性负离子聚合与原子转移自由基聚合(ATRP)技术相结合,运用机理转移法制备了一种两亲性材料聚丁二烯-b-聚(甲基丙烯酸N,N-二甲氨基乙酯)(PB-b-PDMAEMA)嵌段共聚物.首先通过负离子聚合方法设计合成聚丁二烯,用环氧丙烷封端,2-溴异丁酰溴作酯化剂,合成具有活性端基溴的聚丁二烯大分子引发剂(PB-B r),再用其引发亲水性单体DMAEMA进行原子转移自由基聚合,聚合动力学证实了该聚合反应具有典型的活性/可控自由基聚合的特征.通过差示扫描量热法(DSC)研究嵌段共聚物的微相分离行为.制备的大分子引发剂及两亲性嵌段共聚物经凝胶色谱、红外和核磁表征证实了预定的结构.  相似文献   

8.
以单甲氧基聚乙二醇伯胺(m PEG-NH2)作为大分子引发剂,引发γ-炔丙基-L-谷氨酸-N-羧基-环内酸酐(NCA)开环聚合的方法,合成了侧链上含有炔基的聚乙二醇-b-聚(γ-炔丙基-L-谷氨酸)两嵌段共聚物(PEG-b-PPLG).进一步通过巯基-炔基加成的"点击"化学方法,对两嵌段共聚物中聚氨基酸PPLG嵌段分别修饰了普通疏水性的饱和烷烃、具有超疏水性质的全氟代烷烃,并利用红外光谱、圆二色光谱、动态光散射和透射电子显微镜等技术,对合成的两嵌段共聚物在水溶液及有机溶剂四氢呋喃(THF)中的自组装性质进行了研究.研究发现两嵌段共聚物修饰前后,聚氨基酸嵌段在水和THF中都能保持一定的α-螺旋的构象,并进一步自组装形成以α-螺旋的聚氨基酸嵌段为内核、PEG嵌段为外壳的纳米聚集结构.  相似文献   

9.
两亲性或双亲水性嵌段共聚物在许多领域有重要的应用 ,如用作乳化剂 [1] 、结晶改性剂 [2~ 4 ] 和金属胶体模板物 [5] 等 .借助于活性聚合反应 (阴离子型、阳离子型、基团转移和自由基等 ) ,通过相继加入单体的方式 ,制备出了大量的嵌段共聚物 [6~ 9] ,但这种方法有一定局限性 .对于四氢呋喃与各种 (甲基 )丙烯酸酯的两亲性共聚物的合成 ,由于前者只能进行阳离子型开环聚合 ,而后者则只能进行阴离子聚合和自由基聚合 ,因此难以通过上述方法制得嵌段共聚物 .本文报道了通过 PTHF阳离子型活性链与 PMMA阴离子型活性链偶合反应制备 PMMA…  相似文献   

10.
研究了由温敏的聚(2-乙基-2-噁唑啉)和pH值敏感的聚(L-谷氨酸)组成的三嵌段共聚物,聚(2-乙基-2-噁唑啉)-b-聚(ε-己内酯)-b-聚(L-谷氨酸)的合成方法,(1)以对甲苯磺酸甲酯为引发剂引发2-乙基-2-噁唑啉进行正离子开环聚合反应,得到了羟基封端的聚(2-乙基-2-噁唑啉)(PEOz-OH);(2)以PEOz-OH为引发剂,以辛酸亚锡为催化剂,在氯苯中合成了PEOz-b-聚(ε-己内酯)两嵌段共聚物(PEOz-b-PCL-OH);(3)将PEOz-b-PCL-OH末端的羟基转换为氨基,得到氨基封端的两嵌段共聚物(PEOz-b-PCL-NH2);(4)以PEOz-b-PCL-NH2为引发剂引发γ-苄基-L-谷氨酸-N-羧酸酐(BLG-NCA)开环聚合,得到了PEOz-b-PCL-b-聚(γ-苄基-L-谷氨酸)(PEOz-b-PCL-b-PBLG)三嵌段共聚物;(5)以HBr的醋酸溶液为脱保护剂脱去苄基保护基,得到PEOz-b-PCL-b-聚(L-谷氨酸)(PEOz-b-PCL-b-PLGlu)三嵌段共聚物.采用1H-NMR、GPC和FT-IR表征了各步聚合物的结构、分子量和分子量分布.  相似文献   

11.
Poly(styrene-b-isobutylene-b-styrene) triblock copolymer(SIBS), a kind of thermoplastic elastomer with biocompatibility and biostability containing fully saturated soft segments, could be synthesized via living cationic copolymerization. A novel poly[(styrene-comethylstyrene)-b-isobutylene-b-(styrene-co-methylstyrene)]-g-polytetrahydrofuran(M-SIBS-g-PTHF) block graft copolymer was prepared to increase the polarity and service temperature of SIBS by grafting polar PTHF segments onto SIBS. A series of the above block graft copolymers with average grafting numbers from 2 to 6 and molecular weights of PTHF branches ranging from 200 g·mol~(-1) to 4200 g·mol~(-1) were successfully synthesized via living cationic ring-opening polymerization of tetrahydrofuran(THF) coinitiated by AgClO_4. The introduction of PTHF branches led to an obvious microphase separation due to thermodynamic incompatibility among the three kinds of segments of polyisobutylene(PIB),polystyrene(PS) and PTHF. Moreover, the microphase separation promotes the rearrangement of PTHF branches to form the nanocrystallizationlocked physically cross-linked network after storage at room temperature for 2 months, leading to insolubility of the copolymers even in good solvents. The melting temperature and enthalpy of PTHF nanocrystallization locked in hard domains of M-SIBS-g_5-PTHF~(-1).1 k block graft copolymer increased remarkably up to 153 °C and 117.0 J·g~(-1) by 23 °C and 11.6 J·g~(-1) respectively after storage for long time. Storage modulus(G')is higher than loss modulus(G') of M-SIBS-g-PTHF block graft copolymer at temperatures ranging from 100 °C to 180 °C, which is much higher than those of the SIBS triblock copolymer. To the best of our knowledge, this is the first example of high performance M-SIBS-g-PTHF block graft copolymers containing segments of PIB, PS and PTHF with nanocrystallization-locked architecture.  相似文献   

12.
The novel amphiphilic graft copolymers with hydrophilic hard polar hydroxypropyl cellulose(HPC) backbone and hydrophobic soft nonpolar polyisobutylene(PIB) branches have been successfully synthesized through nucleophilic substitution reaction of living PIB chains carrying oxonium ions with the-OH groups along HPC backbone. The PIB branch length in the graft copolymers could be designed by living cationic polymerization and the grafting density could be adjusted by PIB~+/-OH molar ratio. The living PIB chains carrying oxonium ion were prepared by transformation of allyl bromide end groups in the presence of AgClO_4 and silver nanoparticles(3.2±0.3 nm, 0.7 wt%-1.8 wt%)generated in situ from AgBr. The phase-separation morphology was formed in the graft copolymers due to their incompatibility between backbone and branches. The hydrophilicity on the surface of graft copolymer films could be turned to hydrophobicity by increasing grafting density or/and length of PIB branches. The soft PIB segments in graft copolymers provided an unique surface via self-assembly for anti-protein adsorption against bovine serum albumin. A small amount of Ag nanoparticles in the copolymers contributed to good antibacterial activities against Staphylococcus aureus or Escherichia coli.  相似文献   

13.
A simple but effective FeCl3‐based initiating system has been developed to achieve living cationic polymerization of isobutylene (IB) using di(2‐chloro‐2‐propyl) benzene (DCC) or 1‐chlorine‐2,4,4‐trimethylpentane (TMPCl) as initiators in the presence of isopropanol (iPrOH) at ?80 °C for the first time. The polymerization with near 100% of initiation efficiency proceeded rapidly and completed quantitatively within 10 min. Polyisobutylenes (PIBs) with designed number‐average molecular weights (Mn) from 3500 to 21,000 g mol?1, narrow molecular weight distributions (MWD, Mw/Mn ≤ 1.2) and near 100% of tert‐Cl terminal groups could be obtained at appropriate concentrations of iPrOH. Livingness of cationic polymerization of IB was further confirmed by all monomer in technique and incremental monomer addition technique. The kinetic investigation on living cationic polymerization was conducted by real‐time attenuated total reflectance Fourier transform infrared spectroscopy. The apparent constant of rate for propagation (kpA) increased with increasing polymerization temperature and the apparent activation energy (ΔEa) for propagation was determined to be 14.4 kJ mol?1. Furthermore, the triblock copolymers of PS‐b‐PIB‐b‐PS with different chain length of polystyrene (PS) segments could be successfully synthesized via living cationic polymerization with DCC/FeCl3/iPrOH initiating system by sequential monomer addition of IB and styrene at ?80 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
The synthesis of block copolymers of poly(tetrahydrofuran)-b-poly(α-amino acid)(PTHF-b-PAA) is challenging since it is difficult to combine the two blocks produced via different/conflicting ring-opening polymerization(ROP) mechanisms. In this contribution, the cationic ROP of THF is catalyzed by rare-earth triflate [RE(OTf)_3] and terminated by 2-(t-butyloxycarbonyl-amino) ethanol(BAE). After the deprotection of tbutyloxycarbonyl(Boc) group, the chain end of PTHF is quantitatively changed to amino group which thereafter initiates the nucleophilic ROP ofα-amino acid N-thiocarboxyanhydrides(NTAs). Both polymerizations are well controlled, generating PTHF and PAA segments with designable molecular weights(MWs). PTHF-b-polylysine(PTHF-b-PLys) and PTHF-b-polysarcosine(PTHF-b-PSar) are obtained with MWs between 8.6 and28.7 kg/mol. The above amphiphilic diblock copolymers form micelles in water. PTHF_(40)-b-PSar_(32) acts as a surfactant to stabilize oil-in-water emulsions. Both segments of PTHF-b-PAA are biocompatible and promising in the biomedical application.  相似文献   

15.
吴一弦 《高分子科学》2009,27(4):551-559
The highly reactive polyisobutylenes(PIBs) withα-double bonds(87.5 mol%) or tert-chloro(tert-Cl) groups(95 mol%) could be prepared via the cationic polymerization of isobutylene(IB) coinitiated by BF_3 or TiCl_4 respectively.The Friedel-Crafts alkylation of diphenylamine(DPA) with the highly reactive PIB withα-double bonds was further conducted under different conditions,such as at different alkylation temperature,in the mixed solvents of CH_2Cl_2/n-hexane with different solvent polarity and at DPA conce...  相似文献   

16.
Poly[styrene (ST)-tetrahydrofuran (THF)-2-methyl-2-oxazoline(MeOz)] triblock and graft copolymers were prepared by ionic polymerizations. Poly(ST-THF) graft copolymers were synthesized by coupling of ST-4-vinylpyridine (4VP) copolymer with a large excess of PTHF dication. The ion coupling of PST dianion with PTHF dication was accompanied by the side reaction (abstraction of α proton of oxonium ion). After tosylation of terminal hydroxyl groups of PTHF blocks, cationic copolymerizations of MeOz with poly(ST-THF) block and graft copolymers were carried out, and characteristics of produced copolymers were investigated in some detail.  相似文献   

17.

The synthesis of poly[(methyl methacrylate‐co‐hydroxyethyl methacrylate)‐b‐isobutylene‐b‐(methyl methacrylate‐co‐hydroxyethyl methacrylate)] P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished by the combination of living cationic and anionic polymerizations. P(MMA‐co‐HEMA)‐b‐PIB‐b‐P(MMA‐co‐HEMA) triblock copolymers with different compositions were prepared by a synthetic methodology involving the transformation from living cationic to anionic polymerization. First, 1,1‐diphenylethylene end‐functionalized PIB (DPE‐PIB‐DPE) was prepared by the reaction of living difunctional PIB and 1,4‐bis(1‐phenylethenyl)benzene (PDDPE), followed by the methylation of the resulting diphenyl carbenium ion with dimethylzinc (Zn(CH3)2). The DPE ends were quantitatively metalated with n‐butyllithium in tetrahydrofuran, and the resulting macroanion initiated the polymerization of methacrylates yielding triblock copolymers with high blocking efficiency. Microphase separation of the thus prepared triblock copolymers was evidenced by the two glass transitions at ?64 and +120°C observed by differential scanning calorimetry. These new block copolymers exhibit typical stress‐strain behavior of thermoplastic elastomers. Surface characterization of the samples was accomplished by angle‐resolved X‐ray photoelectron spectroscopy (XPS), which revealed that the surface is richer in PIB compared to the bulk. However, a substantial amount of P(MMA‐co‐HEMA) remains at the surface. The presence of hydroxyl functionality at the surface provides an opportunity for further modification.  相似文献   

18.
ABCBA‐type pentablock copolymers of methyl methacrylate, styrene, and isobutylene (IB) were prepared by the cationic polymerization of IB in the presence of the α,ω‐dichloro‐PS‐b‐PMMA‐b‐PS triblock copolymer [where PS is polystyrene and PMMA is poly(methyl methacrylate)] as a macroinitiator in conjunction with diethylaluminum chloride (Et2AlCl) as a coinitiator. The macroinitiator was prepared by a two‐step copper‐based atom transfer radical polymerization (ATRP). The reaction temperature, ?78 or ?25 °C, significantly affected the IB content in the resulting copolymers; a higher content was obtained at ?78 °C. The formation of the PIB‐b‐PS‐b‐PMMA‐b‐PS‐b‐PIB copolymers (where PIB is polyisobutylene), prepared at ?25 (20.3 mol % IB) or ?78 °C (61.3 mol % IB; rubbery material), with relatively narrow molecular weight distributions provided direct evidence of the presence of labile chlorine atoms at both ends of the macroinitiator capable of initiation of cationic polymerization of IB. One glass‐transition temperature (Tg), 104.5 °C, was observed for the aforementioned triblock copolymer, and the pentablock copolymer containing 61.3 mol % IB showed two well‐defined Tg's: ?73.0 °C for PIB and 95.6 °C for the PS–PMMA blocks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3823–3830, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号