首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The purpose of this article is to develop a branch-and-bound algorithm using duality bounds for the general quadratically-constrained quadratic programming problem and having the following properties: (i) duality bounds are computed by solving ordinary linear programs; (ii) they are at least as good as the lower bounds obtained by solving relaxed problems, in which each nonconvex function is replaced by its convex envelope; (iii) standard convergence properties of branch-and-bound algorithms for nonconvex global optimization problems are guaranteed. Numerical results of preliminary computational experiments for the case of one quadratic constraint are reported.  相似文献   

2.
Goal Programming with fractional objectives can be reduced to mathematical programming with a linear objective under linear and quadratic constraints, thus optimal solutions can be obtained by using existing Global Optimization techniques. However, only heuristic procedures are suggested in the literature on the field. In this note we explore the practical applicability of a recent algorithm for nonconvex quadratic programming with quadratic constraints for this problem. Encouraging computational experiences for randomly generated instances with up to 14 fractional objectives are presented.  相似文献   

3.
A standard Quadratic Programming problem (StQP) consists in minimizing a (nonconvex) quadratic form over the standard simplex. For solving a StQP we present an exact and a heuristic algorithm, that are based on new theoretical results for quadratic and convex optimization problems. With these results a StQP is reduced to a constrained nonlinear minimum weight clique problem in an associated graph. Such a clique problem, which does not seem to have been studied before, is then solved with an exact and a heuristic algorithm. Some computational experience shows that our algorithms are able to solve StQP problems of at least one order of magnitude larger than those reported in the literature.  相似文献   

4.
This paper gives an O(n) algorithm for a singly constrained convex quadratic program using binary search to solve the Kuhn-Tucker system. Computational results indicate that a randomized version of this algorithm runs in expected linear time and is suitable for practical applications. For the nonconvex case an-approximate algorithm is proposed which is based on convex and piecewise linear approximations of the objective function.  相似文献   

5.
The nonconvex problem of minimizing the product of a strictly convex quadratic function and the p-th power of a linear function over a convex polyhedron is considered. Some theoretical properties of the problem, such as the existence of minimum points and the generalized convexity of the objective function, are deepened on and a finite algorithm which solves the problem is proposed.  相似文献   

6.
Existing global optimization techniques for nonconvex quadratic programming (QP) branch by recursively partitioning the convex feasible set and thus generate an infinite number of branch-and-bound nodes. An open question of theoretical interest is how to develop a finite branch-and-bound algorithm for nonconvex QP. One idea, which guarantees a finite number of branching decisions, is to enforce the first-order Karush-Kuhn-Tucker (KKT) conditions through branching. In addition, such an approach naturally yields linear programming (LP) relaxations at each node. However, the LP relaxations are unbounded, a fact that precludes their use. In this paper, we propose and study semidefinite programming relaxations, which are bounded and hence suitable for use with finite KKT-branching. Computational results demonstrate the practical effectiveness of the method, with a particular highlight being that only a small number of nodes are required. This author was supported in part by NSF Grants CCR-0203426 and CCF-0545514.  相似文献   

7.
We propose a branch-and-bound algorithm for solving nonconvex quadratically-constrained quadratic programs. The algorithm is novel in that branching is done by partitioning the feasible region into the Cartesian product of two-dimensional triangles and rectangles. Explicit formulae for the convex and concave envelopes of bilinear functions over triangles and rectangles are derived and shown to be second-order cone representable. The usefulness of these new relaxations is demonstrated both theoretically and computationally.  相似文献   

8.
We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S. Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of quadratic objective functions and diagonal coefficient matrices of quadratic constraint functions. A new SOCP relaxation is proposed for the class of nonconvex quadratic optimization problems by extracting valid quadratic inequalities for positive semidefinite cones. Its effectiveness to obtain optimal values is shown to be the same as the SDP relaxation theoretically. Numerical results are presented to demonstrate that the SOCP relaxation is much more efficient than the SDP relaxation.  相似文献   

9.
In this paper we study a class of nonconvex quadratically constrained quadratic programming problems generalized from relaxations of quadratic assignment problems. We show that each problem is polynomially solved. Strong duality holds if a redundant constraint is introduced. As an application, a new lower bound is proposed for the quadratic assignment problem.  相似文献   

10.
Quadratic programming with one negative eigenvalue is NP-hard   总被引:2,自引:0,他引:2  
We show that the problem of minimizing a concave quadratic function with one concave direction is NP-hard. This result can be interpreted as an attempt to understand exactly what makes nonconvex quadratic programming problems hard. Sahni in 1974 [8] showed that quadratic programming with a negative definite quadratic term (n negative eigenvalues) is NP-hard, whereas Kozlov, Tarasov and Haijan [2] showed in 1979 that the ellipsoid algorithm solves the convex quadratic problem (no negative eigenvalues) in polynomial time. This report shows that even one negative eigenvalue makes the problem NP-hard.This author's work supported by the Applied Mathematical Sciences Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013. A000 and in part by the National Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS 8920550.  相似文献   

11.
The author (1992, 1993) earlier studied the equivalence of a class of 0–1 quadratic programs and their relaxed problems. Thus, a class of combinatorial optimization problems can be solved by solving a class of nonconvex quadratic programs. In this paper, a necessary and sufficient condition for local minima of this class of nonconvex quadratic programs is given; this will be the foundation for study of algorithms.Research supported by Huo Yingdong Educational Foundation '93.  相似文献   

12.
The problem of the unequal sphere packing in a 3-dimen-sional polytope is analyzed. Given a set of unequal spheres and a poly-tope, the double goal is to assemble the spheres in such a way that (i) they do not overlap with each other and (ii) the sum of the volumes of the spheres packed in the polytope is maximized. This optimization has an application in automated radiosurgical treatment planning and can be formulated as a nonconvex optimization problem with quadratic constraints and a linear objective function. On the basis of the special structures associated with this problem, we propose a variety of algorithms which improve markedly the existing simplicial branch-and-bound algorithm for the general nonconvex quadratic program. Further, heuristic algorithms are incorporated to strengthen the efficiency of the algorithm. The computational study demonstrates that the proposed algorithm can obtain successfully the optimization up to a limiting size.  相似文献   

13.
In Floudas and Visweswaran (1990, 1993), a deterministic global optimization approach was proposed for solving certain classes of nonconvex optimization problems. An algorithm, GOP, was presented for the solution of the problem through a series ofprimal andrelaxed dual problems that provide valid upper and lower bounds respectively on the global solution. The algorithm was proved to have finite convergence to an -global optimum. In this paper, new theoretical properties are presented that help to enhance the computational performance of the GOP algorithm applied to problems of special structure. The effect of the new properties is illustrated through application of the GOP algorithm to a difficult indefinite quadratic problem, a multiperiod tankage quality problem that occurs frequently in the modeling of refinery processes, and a set of pooling/blending problems from the literature. In addition, extensive computational experience is reported for randomly generated concave and indefinite quadratic programming problems of different sizes. The results show that the properties help to make the algorithm computationally efficient for fairly large problems.  相似文献   

14.
This paper presents a perfect duality theory and a complete set of solutions to nonconvex quadratic programming problems subjected to inequality constraints. By use of the canonical dual transformation developed recently, a canonical dual problem is formulated, which is perfectly dual to the primal problem in the sense that they have the same set of KKT points. It is proved that the KKT points depend on the index of the Hessian matrix of the total cost function. The global and local extrema of the nonconvex quadratic function can be identified by the triality theory [11]. Results show that if the global extrema of the nonconvex quadratic function are located on the boundary of the primal feasible space, the dual solutions should be interior points of the dual feasible set, which can be solved by deterministic methods. Certain nonconvex quadratic programming problems in {\open {R}}^{n} can be converted into a dual problem with only one variable. It turns out that a complete set of solutions for quadratic programming over a sphere is obtained as a by-product. Several examples are illustrated.  相似文献   

15.
提出了一类求解带有箱约束的非凸二次规划的新型分支定界算法.首先,把原问题目标函数进行D.C.分解(分解为两个凸函数之差),利用次梯度方法,求出其线性下界逼近函数的一个最优值,也即原问题的一个下界.然后,利用全局椭球算法获得原问题的一个上界,并根据分支定界方法把原问题的求解转化为一系列子问题的求解.最后,理论上证明了算法的收敛性,数值算例表明算法是有效可行的.  相似文献   

16.
在这篇论文里,有机地把外逼近方法与分枝定界技术结合起来,提出了解带有二次约束非凸二次规划问题的一个分枝缩减方法;给出了原问题的一个新的线性规划松弛,以便确定它在超矩形上全局最优值的一个下界;利用超矩形的一个深度二级剖分方法,以及超矩形的缩减和删除技术,提高算法的收敛速度;证明了在知道原问题可行点的条件下,该算法在有限步里就可以获得原问题的一个全局最优化解,并且用一个例子说明了该算法是有效的.  相似文献   

17.
18.
In this paper, we present an interior point algorithm for solving both convex and nonconvex quadratic programs. The method, which is an extension of our interior point work on linear programming problems efficiently solves a wide class of largescale problems and forms the basis for a sequential quadratic programming (SQP) solver for general large scale nonlinear programs. The key to the algorithm is a three-dimensional cost improvement subproblem, which is solved at every interation. We have developed an approximate recentering procedure and a novel, adaptive big-M Phase I procedure that are essential to the sucess of the algorithm. We describe the basic method along with the recentering and big-M Phase I procedures. Details of the implementation and computational results are also presented.Contribution of the National Institute of Standards and Tedchnology and not subject to copyright in the United States. This research was supported in part by ONR Contract N-0014-87-F0053.  相似文献   

19.
Inspired by the success of the projected Barzilai-Borwein (PBB) method for large-scale box-constrained quadratic programming, we propose and analyze the monotone projected gradient methods in this paper. We show by experiments and analyses that for the new methods, it is generally a bad option to compute steplengths based on the negative gradients. Thus in our algorithms, some continuous or discontinuous projected gradients are used instead to compute the steplengths. Numerical experiments on a wide variety of test problems are presented, indicating that the new methods usually outperform the PBB method.  相似文献   

20.
《Optimization》2012,61(6):1075-1105
ABSTRACT

In this paper, we consider a class of sparse inverse semidefinite quadratic programming problems, in which a nonconvex alternating direction method of multiplier is investigated. Under mild conditions, we establish convergence results of our algorithm and the corresponding non-ergodic iteration-complexity is also considered under the assumption that the potential function satisfies the famous Kurdyka–?ojasiewicz property. Numerical results show that our algorithm is suitable to solve the given sparse inverse semidefinite quadratic programming problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号