首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a mechanism to tighten Reformulation-Linearization Technique (RLT) based relaxations for solving nonconvex programming problems by importing concepts from semidefinite programming (SDP), leading to a new class of semidefinite cutting planes. Given an RLT relaxation, the usual nonnegativity restrictions on the matrix of RLT product variables is replaced by a suitable positive semidefinite constraint. Instead of relying on specific SDP solvers, the positive semidefinite stipulation is re-written to develop a semi-infinite linear programming representation of the problem, and an approach is developed that can be implemented using traditional optimization software. Specifically, the infinite set of constraints is relaxed, and members of this set are generated as needed via a separation routine in polynomial time. In essence, this process yields an RLT relaxation that is augmented with valid inequalities, which are themselves classes of RLT constraints that we call semidefinite cuts. These semidefinite cuts comprise a relaxation of the underlying semidefinite constraint. We illustrate this strategy by applying it to the case of optimizing a nonconvex quadratic objective function over a simplex. The algorithm has been implemented in C++, using CPLEX callable routines, and two types of semidefinite restrictions are explored along with several implementation strategies. Several of the most promising lower bounding strategies have been implemented within a branch-and-bound framework. Computational results indicate that the cutting plane algorithm provides a significant tightening of the lower bound obtained by using RLT alone. Moreover, when used within a branch-and-bound framework, the proposed lower bound significantly reduces the effort required to obtain globally optimal solutions.  相似文献   

2.
We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S. Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of quadratic objective functions and diagonal coefficient matrices of quadratic constraint functions. A new SOCP relaxation is proposed for the class of nonconvex quadratic optimization problems by extracting valid quadratic inequalities for positive semidefinite cones. Its effectiveness to obtain optimal values is shown to be the same as the SDP relaxation theoretically. Numerical results are presented to demonstrate that the SOCP relaxation is much more efficient than the SDP relaxation.  相似文献   

3.
We present a decomposition-approximation method for generating convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP). We first develop a general conic program relaxation for QCQP based on a matrix decomposition scheme and polyhedral (piecewise linear) underestimation. By employing suitable matrix cones, we then show that the convex conic relaxation can be reduced to a semidefinite programming (SDP) problem. In particular, we investigate polyhedral underestimations for several classes of matrix cones, including the cones of rank-1 and rank-2 matrices, the cone generated by the coefficient matrices, the cone of positive semidefinite matrices and the cones induced by rank-2 semidefinite inequalities. We demonstrate that in general the new SDP relaxations can generate lower bounds at least as tight as the best known SDP relaxations for QCQP. Moreover, we give examples for which tighter lower bounds can be generated by the new SDP relaxations. We also report comparison results of different convex relaxation schemes for nonconvex QCQP with convex quadratic/linear constraints, nonconvex quadratic constraints and 0–1 constraints.  相似文献   

4.
In the paper we prove that any nonconvex quadratic problem over some set ${K\subset \mathbb {R}^n}$ with additional linear and binary constraints can be rewritten as a linear problem over the cone, dual to the cone of K-semidefinite matrices. We show that when K is defined by one quadratic constraint or by one concave quadratic constraint and one linear inequality, then the resulting K-semidefinite problem is actually a semidefinite programming problem. This generalizes results obtained by Sturm and Zhang (Math Oper Res 28:246–267, 2003). Our result also generalizes the well-known completely positive representation result from Burer (Math Program 120:479–495, 2009), which is actually a special instance of our result with ${K=\mathbb{R}^n_{+}}$ .  相似文献   

5.
This paper applies the SDP (semidefinite programming)relaxation originally developed for a 0-1 integer program to ageneral nonconvex QP (quadratic program) having a linear objective functionand quadratic inequality constraints, and presents some fundamental characterizations of the SDP relaxation including its equivalence to arelaxation using convex-quadratic valid inequalities for the feasible regionof the QP.  相似文献   

6.
A family of complementarity problems is defined as extensions of the well-known linear complementarity problem (LCP). These are:
(i)  second linear complementarity problem (SLCP), which is an LCP extended by introducing further equality restrictions and unrestricted variables;
(ii)  minimum linear complementarity problem (MLCP), which is an LCP with additional variables not required to be complementary and with a linear objective function which is to be minimized;
(iii)  second minimum linear complementarity problem (SMLCP), which is an MLCP, but the nonnegative restriction on one of each pair of complementary variables is relaxed so that it is allowed to be unrestricted in value.
A number of well-known mathematical programming problems [namely, quadratic programming (convex, nonconvex, pseudoconvex, nonconvex), linear variational inequalities, bilinear programming, game theory, zero-one integer programming, fixed-charge problem, absolute value programming, variable separable programming] are reformulated as members of this family of four complementarity problems. A brief discussion of the main algorithms for these four problems is presented, together with some computational experience.  相似文献   

7.
In this article, we show that the $\ell _1$ -constrained nonconvex quadratic optimization problem (QPL1) is NP-hard, even when the off-diagonal elements are all nonnegative. Then we give an answer to Pinar and Teboulle’s open problem on the nonlinear semidefinite programming relaxation of (QPL1). The analytical approach is extended to $\ell _p$ -constrained quadratic programs with $1<p<2$ .  相似文献   

8.
We propose in this paper a general D.C. decomposition scheme for constructing SDP relaxation formulations for a class of nonconvex quadratic programs with a nonconvex quadratic objective function and convex quadratic constraints. More specifically, we use rank-one matrices and constraint matrices to decompose the indefinite quadratic objective into a D.C. form and underestimate the concave terms in the D.C. decomposition formulation in order to get a convex relaxation of the original problem. We show that the best D.C. decomposition can be identified by solving an SDP problem. By suitably choosing the rank-one matrices and the linear underestimation, we are able to construct convex relaxations that dominate Shor’s SDP relaxation and the strengthened SDP relaxation. We then propose an extension of the D.C. decomposition to generate an SDP bound that is tighter than the SDP+RLT bound when additional box constraints are present. We demonstrate via computational results that the optimal D.C. decomposition schemes can generate both tight SDP bounds and feasible solutions with good approximation ratio for nonconvex quadratically constrained quadratic problems.  相似文献   

9.
10.
In this we paper we study techniques for generating valid convex constraints for mixed 0-1 conic programs. We show that many of the techniques developed for generating linear cuts for mixed 0-1 linear programs, such as the Gomory cuts, the lift-and-project cuts, and cuts from other hierarchies of tighter relaxations, extend in a straightforward manner to mixed 0-1 conic programs. We also show that simple extensions of these techniques lead to methods for generating convex quadratic cuts. Gomory cuts for mixed 0-1 conic programs have interesting implications for comparing the semidefinite programming and the linear programming relaxations of combinatorial optimization problems, e.g. we show that all the subtour elimination inequalities for the traveling salesman problem are rank-1 Gomory cuts with respect to a single semidefinite constraint. We also include results from our preliminary computational experiments with these cuts.Research partially supported by NSF grants CCR-00-09972, DMS-01-04282 and ONR grant N000140310514.  相似文献   

11.
We consider semidefinite, copositive, and more general, set-semidefinite programming relaxations of general nonconvex quadratic problems. For the semidefinite case a comparison between the feasible set of the original program and the feasible set of the relaxation has been given by Kojima and Tunçel (SIAM J Optim 10(3):750–778, 2000). In this paper the comparison is presented for set-positive relaxations which contain copositive relaxations as a special case.  相似文献   

12.
We consider the nonconvex problem (RQ) of minimizing the ratio of two nonconvex quadratic functions over a possibly degenerate ellipsoid. This formulation is motivated by the so-called regularized total least squares problem (RTLS), which is a special case of the problem’s class we study. We prove that under a certain mild assumption on the problem’s data, problem (RQ) admits an exact semidefinite programming relaxation. We then study a simple iterative procedure which is proven to converge superlinearly to a global solution of (RQ) and show that the dependency of the number of iterations on the optimality tolerance grows as . This research is partially supported by the Israel Science Foundation, ISF grant #489-06.  相似文献   

13.
We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C. (difference between convex) optimization approach, which can be reformulated as semidefinite programming problems. As an application, we propose new valid linear constraints for rank-one relaxation.  相似文献   

14.
In this paper, we consider the class of 0–1 integer problems and develop an effective cutting plane algorithm that gives valid inequalities called surrogate-RLT cuts (SR cuts). Here we implement the surrogate constraint analysis along with the reformulation–linearization technique (RLT) to generate strong valid inequalities. In this approach, we construct a tighter linear relaxation by augmenting SR cuts to the problem. The level-\(d\) SR closure of a 0–1 integer program is the polyhedron obtained by intersecting all the SR cuts obtained from RLT polyhedron formed over each set of \(d\) variables with its initial formulation. We present an algorithm for approximately optimizing over the SR closure. Finally, we present the computational result of SR cuts for solving 0–1 integer programming problems of well-known benchmark instances from MIPLIB 3.0.  相似文献   

15.
This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non- convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities from the equation Yx x T . We use the non-convex constraint ${ Y - x x^T \preccurlyeq 0}$ to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y ? x x T with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint ${ Y - x x^T \succcurlyeq 0}$ to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings.  相似文献   

16.
In this paper we consider low-rank semidefinite programming (LRSDP) relaxations of combinatorial quadratic problems that are equivalent to the maxcut problem. Using the Gramian representation of a positive semidefinite matrix, the LRSDP problem can be formulated as the nonconvex nonlinear programming problem of minimizing a quadratic function with quadratic equality constraints. For the solution of this problem we propose a continuously differentiable exact merit function that exploits the special structure of the constraints and we use this function to define an efficient and globally convergent algorithm. Finally, we test our code on an extended set of instances of the maxcut problem and we report comparisons with other existing codes.  相似文献   

17.
We study valid inequalities for optimization models that contain both binary indicator variables and separable concave constraints. These models reduce to a mixed-integer linear program (MILP) when the concave constraints are ignored, or to a nonconvex global optimization problem when the binary restrictions are ignored. In algorithms designed to solve these problems to global optimality, cutting planes to strengthen the relaxation are traditionally obtained using valid inequalities for the MILP only. We propose a technique to obtain valid inequalities that are based on both the MILP constraints and the concave constraints. We begin by characterizing the convex hull of a four-dimensional set consisting of a single binary indicator variable, a single concave constraint, and two linear inequalities. Using this analysis, we demonstrate how valid inequalities for the single node flow set and for the lot-sizing polyhedron can be “tilted” to give valid inequalities that also account for separable concave functions of the arc flows. We present computational results demonstrating the utility of the new inequalities for nonlinear transportation problems and for lot-sizing problems with concave costs. To our knowledge, this is one of the first works that simultaneously convexifies both nonconvex functions and binary variables to strengthen the relaxations of practical mixed-integer nonlinear programs.  相似文献   

18.
In this paper, we propose a branch-and-bound algorithm for finding a global optimal solution for a nonconvex quadratic program with convex quadratic constraints (NQPCQC). We first reformulate NQPCQC by adding some nonconvex quadratic constraints induced by eigenvectors of negative eigenvalues associated with the nonconvex quadratic objective function to Shor’s semidefinite relaxation. Under the assumption of having a bounded feasible domain, these nonconvex quadratic constraints can be further relaxed into linear ones to form a special semidefinite programming relaxation. Then an efficient branch-and-bound algorithm branching along the eigendirections of negative eigenvalues is designed. The theoretic convergence property and the worst-case complexity of the proposed algorithm are proved. Numerical experiments are conducted on several types of quadratic programs to show the efficiency of the proposed method.  相似文献   

19.
We present an improved algorithm for finding exact solutions to Max-Cut and the related binary quadratic programming problem, both classic problems of combinatorial optimization. The algorithm uses a branch-(and-cut-)and-bound paradigm, using standard valid inequalities and nonstandard semidefinite bounds. More specifically, we add a quadratic regularization term to the strengthened semidefinite relaxation in order to use a quasi-Newton method to compute the bounds. The ratio of the tightness of the bounds to the time required to compute them depends on two real parameters; we show how adjusting these parameters and the set of strengthening inequalities gives us a very efficient bounding procedure. Embedding our bounding procedure in a generic branch-and-bound platform, we get a competitive algorithm: extensive experiments show that our algorithm dominates the best existing method.  相似文献   

20.
We consider the outer approximation problem of finding a minimum radius ball enclosing a given intersection of at most n − 1 balls in . We show that if the aforementioned intersection has a nonempty interior, then the problem reduces to minimizing a convex quadratic function over the unit simplex. This result is established by using convexity and representation theorems for a class of quadratic mappings. As a byproduct of our analysis, we show that a class of nonconvex quadratic problems admits a tight semidefinite relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号