首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new approach was taken to understand the flow behavior of concentrated particle suspensions in pressure-driven capillary flow. The flow of concentrated alumina suspensions in a slit channel was visualized and quantitatively analyzed with modified capillary rheometer. The suspensions showed complex flow behaviors; unique solid–liquid transition and shear banding. At low flow rates, 55 vol% alumina suspension showed a unique transient flow behavior; there was no flow at first and continuous change of flow profile was observed with time. At low shear rates in particular, the suspensions exhibited shear-banded flow profile which could be divided into three regions: the region with low flow rate near the wall, the region with rapid increase of flow velocity to maximum, and the region of velocity plateau. Based on both flow visualization and measurement of shear stress, it was found that the shear-banded flow profile in pressure-driven slit channel flow was strongly correlated with shear stress. The banding in pressure-driven flow was different from that in Couette flow. The banding of concentrated alumina suspensions was unique in that sluggish velocity profile was pronounced and two inflection points in velocity profile was exhibited. In this study, shear banding of concentrated alumina suspensions in slit channel flow was visualized and quantitatively analyzed. We expect that this approach can be an effective method to understand the flow behavior of particulate suspensions in the pressure-driven flow which is typical in industrial processing.  相似文献   

2.
In this work we have experimentally measured the apparent wall slip velocity in open channel flow of neutrally buoyant suspension of non-colloidal particles. The free surface velocity profile was measured using the tool of particle imaging velocimetry (PIV) for two different channels made of plane and rough walls. The rough walled channel prevents wall slip, whereas the plane wall showed significant wall slip due to formation of slip layer. By comparing the velocity profiles from these two cases we were able to determine the apparent wall slip velocity. This method allows characterization of wall slip in suspension of large sized particles which cannot be performed in conventional rheometers. Experiments were carried out for concentrated suspensions of various particle volume concentrations and for two different sizes of particles. It was observed that wall slip velocity increases with particle size and concentration but decreases with increase in the viscosity of suspending fluid. The apparent wall slip velocity coefficients are in qualitative agreement with the earlier measurements. The effect of wall slip on free surface corrugation was also studied by analyzing the power spectral density (PSD) of the refracted light from the free surface. Our results indicate that free surface corrugation is a bulk flow response and it does not arise from boundary problem such as development of slip layer.  相似文献   

3.
In this paper, a modified particle temperature model for concentrated suspensions is proposed, which allows for the shear-induced migration of particles. The migration is modelled by a convection–diffusion equation, derived from the particle mass and momentum conservation. The model is implemented in an unstructured finite volume method and is utilized to investigate the shear-induced particle migration in channel flow. The profiles and the evolution of the velocity, concentration and particle temperature along the channel are presented. The entrance lengths needed to reach a fully developed profile of the corresponding field variables are also checked against different averaged concentrations and different relative particle radii. Comparison with available experimental data is made whenever possible.  相似文献   

4.
Structure of wake of a sharp-edged bluff body in a shallow channel flow   总被引:1,自引:0,他引:1  
The flow field downstream of a bluff body in a typical open channel flow was explored by two-dimensional particle image velocimetry. Measurements are obtained in horizontal planes at the near-bed, mid-depth and near-surface locations downstream of the body up to a streamwise distance of 10D, where D is the width of the body. The dimensionless streamwise defect velocity profile of the wake flow matches well with the data of a previous investigation and does not reflect any dependency on the distance from the bed. However, the nature of development of the recirculation region is found to be different at the three vertical locations. The time-averaged streamline pattern indicates the existence of a unique nodal pattern close to the bed. The variation of the half-width is also found to be affected by the presence of the bed and the free surface. The bed friction arrests the transverse growth of the shear layer, and the free-surface helps to redistribute the turbulent kinetic energy in the streamwise and transverse directions. Swirling strength analysis is carried out to compare the behavior and statistics of the vortex population in the vertical direction. The prevailing magnitude of the swirling strength is found to be different at the three vertical locations. Bed friction assists to dissipate vorticity rapidly, and therefore reduces the probability of appearance of strong vortices close to the bed.  相似文献   

5.
Turbulent flows in channels with intense distributed injection are modeled using the large eddy method and the two-equation k-? turbulence model. The calculations are carried out for different velocities of injection from the channel walls. For a channel with one-sided injection the results of large eddy simulation are in good agreement with the measured data, whereas the calculations in accordance with the k-? model give a less convex cross-sectional velocity profile and an appreciable error in determining the surface friction coefficient on the impermeable wall and also have certain other shortcomings. In the case of two-sided injection, the results of the calculations by the large eddy method and the k-? model are in good agreement with one another and the data of physical experiments.  相似文献   

6.
Particle-tracking experiments were performed to validate a model [Staben, M.E., Zinchenko, A.Z., Davis, R.H., 2003. Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys. Fluids 15, 1711–1733] for neutrally buoyant spherical particles convected by a Poiseuille flow in a thin microchannel for particles as large as dp/H = 0.95, where dp is the particle diameter and H is the channel width (narrow dimension). The measured and predicted velocities agree within experimental error and show that a particle’s velocity is more retarded when it is larger and/or closer to a channel wall. The particle distribution across the channel for a blunt entrance shows a focusing of small particles away from the walls and towards the center of the channel, whereas the particle distribution for an offset-angled entrance is slightly skewed towards the wall encountered first in the entrance region. As a result, the average particle velocities for the blunt entrance exceed those for the angled entrance. Moreover, due to the depletion of particles from the slow-moving region within one radius of the wall, the average particle velocity exceeds the average fluid velocity unless the particle diameter exceeds about 80% of the channel width.  相似文献   

7.
Free-surface fluctuations in hydraulic jumps: Experimental observations   总被引:1,自引:0,他引:1  
A hydraulic jump is the rapid and sudden transition from a high-velocity supercritical open channel flow to a subcritical flow. It is characterised by the dynamic interactions of the large-scale eddies with the free-surface. New series of experimental measurements were conducted in hydraulic jumps with Froude numbers between 3.1 and 8.5 to investigate these interactions. The dynamic free surface measurements were performed with a non-intrusive technique while the two-phase flow properties were recorded with a phase-detection probe. The shape of the mean free surface profile was well defined and the turbulent fluctuation profiles highlighted a distinct peak of turbulent intensity in the first part of the jump roller, with free-surface fluctuation levels increasing with increasing Froude number. The dominant free-surface fluctuation frequencies were typically between 1 and 4 Hz. A comparison between the acoustic sensor signals and conductivity probe data suggested that the air–water “free-surface” detected by the acoustic sensor corresponded to about the boundary between the turbulent shear layer and the upper free-surface layer. Simultaneous measurements of free surface and bubbly flow fluctuations for Fr = 5.1 indicated that the frequency ranges of both sensors were similar (F < 5 Hz) whatever the position downstream of the toe. The present results highlighted that the dynamic free-surface measurements can be conducted successfully using acoustic displacement meters, and the time-averaged depth measurements was a physical measure of the free-surface location in hydraulic jumps.  相似文献   

8.
This paper presents results of an experimental study investigating the mean and temporal evolution of flow within the pore space of a packed bed overlain by a free-surface flow. Data were collected by an endoscopic PIV (EPIV) technique. EPIV allows the instantaneous velocity field within the pore space to be quantified at a high spatio-temporal resolution, thus permitting investigation of the structure of turbulent subsurface flow produced by a high Reynolds number freestream flow (Re s in the range 9.8?×?103?C9.7?×?104). Evolution of coherent flow structures within the pore space is shown to be driven by jet flow, with the interaction of this jet with the pore flow generating distinct coherent flow structures. The effects of freestream water depth, Reynolds and Froude numbers are investigated.  相似文献   

9.
The particle migration effects and fluid–particle interactions occurring in the flow of highly concentrated fluid–particle suspension in a spatially modulated channel have been investigated numerically using a finite volume method. The mathematical model is based on the momentum and continuity equations for the suspension flow and a constitutive equation accounting for the effects of shear‐induced particle migration in concentrated suspensions. The model couples a Newtonian stress/shear rate relationship with a shear‐induced migration model of the suspended particles in which the local effective viscosity is dependent on the local volume fraction of solids. The numerical procedure employs finite volume method and the formulation is based on diffuse‐flux model. Semi‐implicit method for pressure linked equations has been used to solve the resulting governing equations along with appropriate boundary conditions. The numerical results are validated with the analytical expressions for concentrated suspension flow in a plane channel. The results demonstrate strong particle migration towards the centre of the channel and an increasing blunting of velocity profiles with increase in initial particle concentration. In the case of a stenosed channel, the particle concentration is lowest at the site of maximum constriction, whereas a strong accumulation of particles is observed in the recirculation zone downstream of the stenosis. The numerical procedure applied to investigate the effects of concentrated suspension flow in a wavy passage shows that the solid particles migrate from regions of high shear rate to low shear rate with low velocities and this phenomenon is strongly influenced by Reynolds numbers and initial particle concentration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
设计了改进的隔板实验装置,采用PVDF压力计测量受试炸药的入射压力,利用高速分幅相机得到炸药自由表面发展变化过程.通过分析计算得到入射压力与自由表面粒子速度之间的关系,并与未反应炸药计算的自由面粒子速度进行了比较,得到JO-9159炸药在低冲击作用下的化学反应阈值和点火阈值分别为1.13和1.98 GPa.  相似文献   

11.
Velocity profile of fiber suspension flow in a rectangular channel is measured by pulsed ultrasonic Doppler velocimetry (PUDV), and the effect of fiber concentration and Reynolds number on the shape of the velocity profile is investigated. Five types of flow behavior are observed when fiber concentration increases or flow rate decreases progressively. The turbulent velocity profiles of fiber suspension can be described by a correlation with fiber concentration, nl3, and Reynolds number, Re as the main parameters. The presence of fiber in the suspension will reduce the turbulence intensity and thus reduce the turbulent momentum transfer. On the other hand, fibers in the suspension have the tendency to form fiber networks, which will increase the momentum transfer. The relative contribution of these two types of momentum flux will determine the final shape of the velocity profile.  相似文献   

12.
Three-dimensional mean velocity and concentration fields have been measured for a water flow in a pressure side cutback trailing edge film cooling geometry consisting of rectangular film cooling slots separated by tapered lands. Three-component mean velocities were measured with conventional magnetic resonance velocimetry, while time-averaged concentration distributions were measured with a magnetic resonance concentration technique for flow at two Reynolds numbers (Re) differing by a factor of 2, three blowing ratios, and with and without an internal pin fin array in the coolant feed channel. The results show that the flows are essentially independent of Re for the regime tested in terms of the film cooling surface effectiveness, normalized velocity profiles, and normalized mean streamwise vorticity. Blowing ratio changes had a larger effect, with higher blowing ratios resulting in surface effectiveness improvements at downstream locations. The addition of a pin fin array within the slot feed channel made the spanwise distribution of coolant at the surface more uniform. Results are compared with transonic experiments in air at realistic density ratios described by Holloway et al. (2002a).  相似文献   

13.
The dam-break problem (i.e., the sudden release of a given volume of fluid down a slope) has attracted a great deal of attention from mechanicians and physicists over the past few years, with particular interest devoted to the free-surface profile and the spreading rate. Experimentally, impediments to accurate measurements of the free-surface evolution are numerous because of the significant variations in its curvature and velocity. To accurately measure the surge’s free-surface variations with time, we have developed a new imaging system, consisting of a digital camera coupled with a synchronized micro-mirror projector. The object’s surface is imaged into a camera and patterns are projected onto the surface under an angle of incidence that differs from the imaging direction. From the deformed pattern recorded by the camera, the phase can be extracted and, by using unwrapping algorithms, the height can be computed and the free surface reconstructed. We were able to measure the free surface of the flow to within 1 mm over a surface of 1.8 × 1.1 m2. Although the techniques used in our system are not new when taken individually, the system in its entirety is innovative and more efficient than most methods used to-date in practical applications.  相似文献   

14.
The influence of the velocity profile at the inlet boundary on the simulation of air velocity distribution inside an electrostatic precipitator is presented in this study. Measurements and simulations were performed in a duct and an electrostatic precipitator (ESP). A four-hole cobra probe was used for the measurement of velocity distribution. The flow simulation was performed by using the computational fluid dynamics (CFD) code FLUENT. Numerical calculations for the air flow were carried out by solving the Reynolds-averaged Navier–Stokes equations coupled with the realizable k-ε turbulence model equations. Simulations were performed with two different velocity profiles at the inlet boundary – one with a uniform (ideal) velocity profile and the other with a non-uniform (real) velocity profile to demonstrate the effect of velocity inlet boundary condition on the flow simulation results inside an ESP. The real velocity profile was obtained from the velocity measured at different points of the inlet boundary whereas the ideal velocity profile was obtained by calculating the mean value of the measured data. Simulation with the real velocity profile at the inlet boundary was found to predict better the velocity distribution inside the ESP suggesting that an experimentally measured velocity profile could be used as velocity inlet boundary condition for an accurate numerical simulation of the ESP.  相似文献   

15.
This work concerns the analysis of experimental instantaneous fluid levels and three-component fluid velocity measurements in a stationary flow field generated by a Crump weir in a laboratory flume using an ultrasonic distance sensor and a three-probe arrangement of an ultrasonic Doppler velocity profiler. The tests are characterised by different and increasing Froude numbers (Fr = 0.10–0.38), with the free surface of the fluid ranging from flat (low Froude number) to almost aerated (high Froude number). The statistics of the free surface are computed, and the relevant length and velocity scales are measured. A free-surface boundary layer was detected having a thickness proportional to the root mean square of the free-surface height series and with a velocity scale that related well to the free-surface elevation time gradient. The mean velocity profiles are presented. There are many indicators that a specific regime occurs with an optimal tuning between free surface and turbulence. In this regime, the length scales are raised.  相似文献   

16.
A technique was developed to perform automated velocity measurements from a sequence of particle images. A very thin sheet of laser light allows determination of essentially two-dimensional velocity profiles in very small conduits. A four image sequence was captured by a microcomputer-based frame grabber. After thresholding to eliminate particles not perfectly centered in the sheet of light, the sequence of pseudo-colored images of a given particle is used to determine its velocity. By measuring several two-dimensional velocity profiles across a square channel, the complete three-dimensional velocity profile was assembled. The experimentally measured velocity profile agrees closely with the known theoretical velocity profile for flow in a square channel.  相似文献   

17.
18.
Euler-Euler two-fluid model is used to simulate the hydrodynamics of gas-solid flow in a bubbling flu- idized bed with Geldert B particles where the solid property is calculated by applying the kinetic theory of granular flow (KTGF). Johnson and Jackson wall boundary condition is used for the particle phase, and different amount of slip between particle and wall is given by varying the specularity coefficient (φ) from 0 to 1. The simulated particle velocity, granular temperature and particle volume fraction are compared to investigate the effect of different wall boundary conditions on the hydrodynamic behavior, Some of the results are also compared with the available experimental data from the literature. It was found that the model predictions are sensitive to the specularity coefficient. The hydrodynamic behavior deviated sig- nificantly for φ = 0 and φ = 0.01 with maximum deviation found at φ = 0 i.e. free-slip condition. However, the overall bed height predicted by all the conditions is similar.  相似文献   

19.
This paper experimentally investigated the effect of rotating on the turbulent boundary layer flow using hot-wire. The experiments were completed in a rotating rig with a vertical axis and four measured positions along the streamwise direction in channel, which focuses on the flow flied in the rotating channel. The rotating effects on velocity profile, wall shear stress and semi-logarithmic mean velocity profile are discussed in this paper. The results indicated that: due to the Coriolis force induced by rotating, the phenomenon of velocity deficit happens near the leading side. The velocity deficit near the leading side, do not increase monotonically with the increase of Ro. The trend of the velocity deficit near the leading side is also affected by the normal component of pressure gradient, which is another important force in the cross-section of the rotating channel. The wall shear stress near the trailing side is larger than that on the leading side, and the semi-logarithmic mean velocity profile is also different under rotating effects. The phenomenon reveals that the effect of rotation penetrates into the logarithm region, and the flow near the leading side tends to turn into laminar under the effect of rotation. The rotation correction of logarithmic law is performed in current work, which can be used in the wall function of CFD to increase the simulating accuracy at rotating conditions.  相似文献   

20.
A hydraulic jump is characterized by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air–water flow measurements were performed in a large-size facility using two types of phase-detection intrusive probes: i.e. single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent integral time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of Chanson [H. Chanson, Bubbly flow structure in hydraulic jump, Eur. J. Mech. B/Fluids 26 (3) (2007) 367–384], providing the turbulent scales of the eddy structures advecting the air bubbles in the developing shear layer. The length scale Lxz is an integral air–water turbulence length scale which characterized the transverse size of the large vortical structures advecting the air bubbles. The experimental data showed that the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e. Lxz/d1 = 0.2–0.8, with Lxz increasing towards the free-surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号