首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vortex formation from a vertical cylinder in shallow water is controlled by placement of a narrow transverse strip of roughness elements on the bed (bottom surface). A technique of high-image-density particle image velocimetry is employed to obtain global, instantaneous representations of the flow patterns, which lead to phase- and time-averaged patterns of streamline topology and Reynolds stress on planes at and above the bed. Near the bed, the overall form of the streamline topology is maintained, even at larger heights of the roughness elements. With increasing height of the elements, the downstream saddle point is further displaced in the streamwise direction. Correspondingly, the streamwise extent of the negative pocket of the streamwise velocity component, i.e., the region of reverse flow along the bed surface, increases substantially in the streamwise direction. The Reynolds stress in the very near-wake, at locations upstream of the roughness elements, is significantly attenuated, even for small height of roughness. This attenuation occurs not only near the bed surface, but also at the midplane of the shallow water wake, and thereby indicates that the consequence of localized roughness is to exert a global influence. In fact, corresponding patterns of instantaneous velocity and vorticity indicate that consistent formation of large-scale vortices in the very near-wake region is attenuated with relatively small surface roughness on the bed. Downstream of the roughness elements, the patterns of Reynolds stress near the bed surface, as well as at the midplane of the water layer, are significantly altered relative to the case of no roughness. Near the bed, highly concentrated patterns of positive and negative Reynolds stress in the absence of roughness give way to lower-level regions of Reynolds stress in the form of alternating concentrations; the particular pattern depends on the height of the roughness elements. At the midplane of the water layer, the Reynolds stress patterns maintain their same overall form, but the extrema of the Reynolds stress concentrations are attenuated in magnitude and are shifted in the downstream direction, with increasing height of the roughness elements. These observations are complemented by patterns of instantaneous velocity and vorticity.  相似文献   

2.
Three-dimensional numerical modeling using Detached Eddy Simulation (DES) based on unsteady Reynolds-Averaged Navier–Stokes (RANS) with the k–ω SST (Shear-Stress Transport) turbulence model has been carried out to evaluate the characteristics of a shallow wake flow. The shallow wake is generated by inserting a sharp-edged bluff body in the open channel flow. A horseshoe vortex is captured in front of the body, which stretches downstream and envelops the vortices that form part of the shear layers. The mean and instantaneous flow field characteristics in the wake are examined and compared at different downstream locations to evaluate the three-dimensional features in the flow. Streamwise positive directed velocity is observed in the wake centerline at horizontal planes close to the bed. Flow features hitherto not captured in experimental studies can be identified in sections parallel to the bed and body. A typical signature of three-dimensionality, upward ejection of fluid elements from the bed towards the free surface, is also observed in the wake.  相似文献   

3.
Results are presented for flow-induced vibrations of a pair of equal-sized circular cylinders of low nondimensional mass (m*=10) in a tandem arrangement. The cylinders are free to oscillate both in streamwise and transverse directions. The Reynolds number, based on the free-stream speed and the diameter of the cylinders, D is 100 and the centre-to-centre distance between the cylinders is 5.5D. The computations are carried out for reduced velocities in the range 2≤U*≤15. The structural damping is set to zero for enabling maximum amplitudes of oscillation. A stabilized finite element method is utilized to carry out the computations in two dimensions. Even though the response of the upstream cylinder is found to be qualitatively similar to that of an isolated cylinder, the presence of a downstream cylinder is found to have significant effect on the behaviour of the upstream cylinder. The downstream cylinder undergoes very large amplitude of oscillations in both transverse and streamwise directions. The maximum amplitude of transverse response of the downstream cylinder is quite similar to that of a single cylinder at higher Re beyond the laminar regime. Lock-in and hysteresis are observed for both upstream and downstream cylinders. The downstream cylinder undergoes large amplitude oscillations even beyond the lock-in state. The phase between transverse oscillations and lift force suffers a 180 jump for both the cylinders almost in the middle of the synchronization regime. The phase between the transverse response of the two cylinders is also studied. Complex flow patterns are observed in the wake of the freely vibrating cylinders. Based on the phase difference and the flow patterns, the entire flow range is divided into five sub-regions.  相似文献   

4.
The effects of shape and relative submergence (the ratio of flow depth to obstacle height, d/H) are investigated on the wakes around four different low-aspect-ratio wall-mounted obstacles at Re H  = 17,800: semi-ellipsoids with the major axes of the base ellipses aligned in the streamwise and transverse directions, and two cylinders with aspect ratios matching the ellipsoids (H/D = 0.89 and 0.67, where D is the maximum transverse dimension). Particle Image Velocimetry was used to interrogate the flow. Streamwise features observed in the mean wake include counter-rotating distributions of vorticity inducing downwash (tip structures), upwash (base structures), and horseshoe vortices. In particular, the relatively subtle change in geometry produced by the rotation of the ellipsoid from the streamwise to the transverse orientation results in a striking modification of the mean streamwise vorticity distribution in the wake. Tip structures are dominant in the former case, while base structures are dominant in the latter. A vortex skeleton model of the wake is proposed in which arch vortex structures, shed from the obstacle, are deformed by the competing mechanisms of Biot-Savart self-induction and the external shear flow. The selection of tip or base structures in the ellipsoid wakes is caused by tilting of the arch structures either upstream or downstream, respectively, which is governed by ellipsoid curvature. An inverse relationship was observed between the relative submergence and the strength of the base structures for the ellipsoids, with a dominant base structure observed for d/H = 1 in both cases. These results demonstrate a means by which to achieve significant modifications to flow structure and thereby also to transport mechanisms in the flow. Therefore, this work provides insight into the modeling and control of flow over wall-mounted bodies.  相似文献   

5.
We show that a rather simple, steady modification of the streamwise velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarizes. Two different devices, a stationary obstacle (inset) and a device which injects fluid through an annular gap close to the wall, are used to control the flow. Both devices modify the streamwise velocity profile such that the flow in the center of the pipe is decelerated and the flow in the near wall region is accelerated. We present measurements with stereoscopic particle image velocimetry to investigate and capture the development of the relaminarizing flow downstream these devices and the specific circumstances responsible for relaminarization. We find total relaminarization up to Reynolds numbers of 6000, where the skin friction in the far downstream distance is reduced by a factor of 3.4 due to relaminarization. In a smooth straight pipe the flow remains completely laminar downstream of the control. Furthermore, we show that transient (temporary) relaminarization in a spatially confined region right downstream the devices occurs also at much higher Reynolds numbers, accompanied by a significant local skin friction drag reduction. The underlying physical mechanism of relaminarization is attributed to a weakening of the near-wall turbulence production cycle.  相似文献   

6.
The effect of sidewalls on rectangular jets   总被引:1,自引:0,他引:1  
An experimental study is presented regarding the influence of sidewalls on the turbulent free jet flow issuing from a smoothly contracting rectangular nozzle of aspect ratio 15. “Sidewalls” are two parallel plates, flush with each of the slots’ short sides, practically establishing bounding walls extending the nozzle sidewalls in the downstream direction. Measurements of the streamwise and lateral velocity mean and turbulent characteristics have been accomplished, with an x-sensor hot wire anemometer, up to an axial distance of 35 nozzle widths, for jets with identical inlet conditions with and without sidewalls. Centreline measurements for both configurations have been collected for three Reynolds numbers, ReD = 10,000, 20,000 and 30,000. For ReD = 20,000 measurements in the transverse direction were collected at 13 different downstream locations in the range, x = 0–35 nozzle widths, and in the spanwise direction at three different downstream locations, x = 2, 6 and 25 nozzle widths.Results indicate that, the two jet configurations (with and without sidewalls) produce statistically different flow fields. Sidewalls do not lead to the production of a 2D flow field as undulations in the spanwise mean velocity distribution indicate. They do increase the two-dimensionality of the jet increasing the longevity of 2D spanwise rollers structures formed in the initial stages of entrainment, which are responsible for the convection of longitudinal momentum towards the outer field, establishing larger streamwise mean velocities at the jet edges. In the near field, up to 25 nozzle widths, lower outward lateral velocities in the presence of the sidewalls are held responsible for the decrease of turbulent terms including rms of velocity fluctuations and Reynolds stresses. Skewness factors increase monotonically across the shear layers from negative values to positive forming sharp peaks at the outer edges of the jet, illustrative of the presence of well defined 2D roller structures in the jet with sidewalls.  相似文献   

7.
The time-averaged velocity and streamwise vorticity fields within the wake of a stack were investigated in a low-speed wind tunnel using a seven-hole pressure probe. The experiments were conducted at a Reynolds number, based on the stack external diameter, of ReD=2.3×104. The stack, of aspect ratio AR=9, was mounted normal to a ground plane and was partially immersed in a flat-plate turbulent boundary layer, where the ratio of the boundary layer thickness to the stack height was δ/H≈0.5. The jet-to-cross-flow velocity ratio was varied from R=0 to 3, which covered the downwash, crosswind-dominated and jet-dominated flow regimes. In the downwash and crosswind-dominated flow regimes, two pairs of counter-rotating streamwise vortex structures were identified within the stack wake. The tip vortex pair located close to the free end of the stack, and the base vortex pair located close to the ground plane within the flat-plate boundary layer, were similar to those found in the wake of a finite circular cylinder, and were associated with the upwash and downwash flow fields within the stack wake, respectively. In the jet-dominated flow regime, a third pair of streamwise vortex structures was observed, referred to as the jet-wake vortex pair, which occurred within the jet-wake region above the free end of the stack. The jet-wake vortex pair had the same orientation as the base vortex pair and was associated with the jet rise. The peak vorticity and strength of the streamwise vortex structures were functions of the jet-to-cross-flow velocity ratio. For the tip vortex structures, their peak vorticity and strength reduced as the jet-to-cross-flow velocity ratio increased.  相似文献   

8.
While large-scale motions are most energetic in the logarithmic region of a high-Reynolds-number turbulent boundary layer, they also have an influence in the inner-region. In this paper we describe an experimental investigation of manipulating the large-scale motions and reveal how this affects the turbulence and skin-friction drag. A boundary layer with a friction Reynolds number of 14 400 is controlled using a spanwise array of nine wall-normal jets operated in an on/off mode and with an exit velocity that causes the jets in cross-flow to penetrate within the log-region. Each jet is triggered in real-time with an active controller, driven by a time-resolved footprint of the large-scale motions acquired upstream. Nominally, the controller injects air into large-scale zones with positive streamwise velocity fluctuations; these zones are associated with positive wall-shear stress fluctuations. This control scheme reduced the streamwise turbulence intensity in the log-region up to a downstream distance of more than five times the boundary layer thickness, δ, from the point of actuation. The highest reduction in spectral energy—more than 30%—was found for wavelengths larger than 5δ in the log-region at 1.7δ downstream of actuation, while scales larger than 2δ still comprised more than 15% energy reduction in the near-wall region. In addition, a 3.2% reduction in mean skin-friction drag was achieved at 1.7δ downstream of actuation. Our reductions of the streamwise turbulence intensity and mean skin-friction drag exceed a base line control-case, for which the jet actuators were operated with the same temporal pattern, but not synchronised with the incoming large-scale zones of positive fluctuating velocity.  相似文献   

9.
This study aims to investigate experimentally the influence of rounding corners (r) as well as aspect ratio (AR) on the flow structures of a surface-mounted finite cylinder. The cylinders with sharp (r* = r/D = 0) and rounded corners (r*=0.167, 0.25 and 0.5) and aspect ratio or height-to-width/diameter ratio (AR = H/D) between 2 and 7 are utilized. The experiments are based on the five-hole probe and hot-wire measurements as well as the oil flow visualization. Wake measurements are made in an open return wind tunnel at the Reynolds number, Re = 1.6 × 104, where Re is defined based on the side width/diameter (D) of the cylinder cross-section and the freestream velocity. It is found that r* and AR have significant effects on the flow structure from the perspective of wake topology, strength of streamwise vortices, and vortex shedding frequency. For all r* considered, the wake is characterized by a quadrupole type (both the tip and base vortices are present) at AR = 7, while a dipole type occurs for AR = 2 and 4 (the base vortices are absent). The strength (circulation) of the streamwise vortex structures is affected by r*. For all AR examined in the present study, the strengths of tip and base vortex structures decrease with increasing r*. The oil flow visualization demonstrates that the features of the horseshoe vortex are sensitive to r* and AR. With increasing r*, the location of the separation line moves downstream and the distance between horseshoe vortex legs decreases. Velocity measurements reveal that the downwash flow enhances with increasing r*. It is also found that the Strouhal number increases progressively by 60% as r* increases from 0 to 0.5, regardless of AR.  相似文献   

10.
This study investigated the two-dimensional flow past two tandem circular or square cylinders at Re = 100 and D / d = 4–10, where D is the center-to-center distance and d is the cylinder diameter. Numerical simulation was performed to comparably study the effect of cylinder geometry and spacing on the aerodynamic characteristics, unsteady flow patterns, time-averaged flow characteristics and flow unsteadiness. We also provided the first global linear stability analysis and sensitivity analysis on the physical problem for the potential application of flow control. The objective of this work is to quantitatively identify the effect of the cylinder geometry and spacing on the characteristic quantities. Numerical results reveal that there is wake flow transition for both geometries depending on the spacing. The characteristic quantities, including the time-averaged and fluctuating streamwise velocity and pressure coefficient, are quite similar to that of the single cylinder case for the upstream cylinder, while an entirely different variation pattern is observed for the downstream cylinder. The global linear stability analysis shows that the spatial structure of perturbation is mainly observed in the wake of the downstream cylinder for small spacing, while moves upstream with reduced size and is also observed after the upstream cylinder for large spacing. The sensitivity analysis reflects that the temporal growth rate of perturbation is the most sensitive to the near-wake flow of downstream cylinder for small spacing and upstream cylinder for large spacing.  相似文献   

11.
Vortex behavior and characteristics in a confined rectangular jet with a co-flow were examined using vortex swirling strength as a defining characteristic. On the left side of the jet, the positively (counterclockwise) rotating vortices are dominant, while negatively rotating vortices are dominant on the right side of the jet. The characteristics of vortices, such as population density, average size and strength, and deviation velocity, were calculated and analyzed in both the cross-stream direction and the streamwise direction. In the near-field of the jet, the population density, average size and strength of the dominant direction vortices show high values on both sides of the center stream with a small number of counter-rotating vortices produced in the small wake regions close to jet outlet. As the flow develops, the wake regions disappear, these count-rotating vortices also disappear, and the population of the dominant direction vortices increase and spread in the jet. The mean size and strength of the vortices decrease monotonically with streamwise coordinate. The signs of vortex deviation velocity indicate the vortices transfer low momentum to high-velocity region and high momentum to the low velocity region. The developing trends of these characteristics were also identified by tracing vortices using time-resolved particle image velocimetry data. Both the mean tracked vortex strength and size decrease with increasing downstream distance overall. At the locations of the left peak of turbulent kinetic energy, the two-point spatial cross-correlation of swirling strength with velocity fluctuation and concentration fluctuation were calculated. All the correlation fields contain one positively correlated region and one negatively correlated region although the orientations of the correlation fields varied, due to the flow transitioning from wake, to jet, to channel flow. Finally, linear stochastic estimation was used to calculate conditional structures. The large-scale structures in the velocity field revealed by linear stochastic estimation are spindle-shaped with a titling stream-wise major axis.  相似文献   

12.
The wake produced by a bluff body driven through a steady recirculating flow is studied experimentally in a water facility using particle image velocimetry. The bluff body has a rectangular cross section of height, \(H\), and width, \(D\), such that the aspect ratio, AR = H/D, is equal to 3. The motion of the bluff body is uniform and rectilinear, and corresponds to a Reynolds number based on width, Re D  = 9,600. The recirculating flow is confined within a hemicylindrical enclosure and is generated by planar jets emanating from slots of width, \(h\), such that \(Re_h=500\). Under these conditions, experiments are performed in a closed-loop facility that enables complete optical access to the near-wake. Velocity fields are obtained up to a distance of \(13D\) downstream of the moving body. Data include a selection of phase-averaged velocity fields representative of the wake for a baseline case (no recirculation) and an interaction case (with recirculation). Results indicate that the transient downwash flow typically observed in wakes behind finite bodies of small aspect ratio is significantly perturbed by the recirculating flow. The wake is displaced from the ground plane and exhibits a shorter recirculation zone downstream of the body. In summary, it was found that the interaction between a bluff body wake and a recirculating flow pattern alters profoundly the dynamics of the wake, which has implications on scalar transport in the wake.  相似文献   

13.
An iterative boundary element method, which was originally developed for both two‐ and three‐dimensional cavitating hydrofoils moving steadily under a free surface, is modified and extended to predict the wave pattern and wave resistance of surface piercing bodies, such as ship hulls and vertical struts. The iterative nonlinear method, which is based on the Green theorem, allows the separation of the surface piercing body problem and the free‐surface problem. The free‐surface problem is also separated into two parts; namely, left and right (with respect to x axis) free‐surface problems. Those all (three) problems are solved separately, with the effects of one on the other being accounted for in an iterative manner. The wetted surface of the body (ship hull or strut, including cavity surface if exists) and the left and right parts with respect to x axis of free surface are modelled with constant strength dipole and constant strength source panels. In order to prevent upstream waves, the source strengths from some distance in front of the body to the end of the truncated upstream boundary are enforced to be zero. No radiation condition is enforced for downstream and transverse boundaries. A transverse wave cut technique is used for the calculation of wave resistance. The method is first applied to a point source and a three‐dimensional submerged cavitating hydrofoil to validate the method and a Wigley hull and a vertical strut to compare the results with those of experiments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Aeroelastic vibrations of a plate aligned at a zero angle of attack in a viscous incompressible fluid flow in a channel with parallel walls are considered within the framework of a plane model. Forced vibrations of the plate in the transverse direction give rise an unsteady component of the flow friction force, induced by the perturbation of the fluid flow velocity by the vibrating plate. Under the assumption of the laminar character of the fluid flow, it is demonstrated that this force can excite streamwise vibrations of the plate if the channel width is small as compared with the plate length; these streamwise vibrations have the same order as the transverse vibrations of the plate excited by external forces.  相似文献   

15.
A numerical study of the alteration of a square cylinder wake using a detached downstream thin flat plate is presented. The wake is generated by a uniform flow of Reynolds number 150 based on the side length of the cylinder, D. The sensitivity of the near wake structure to the downstream position of the plate is investigated by varying the gap distance (G) along the wake centerline in the range 0  G  7D for a constant plate length of L = D. A critical gap distance is observed to occur at Gc  2.3D that indicates the existence of two flow regimes. Regime I is characterised by vortex formation occurring downstream of the gap while for regime II, formation occurs within the gap. By varying the plate length and gap distance, a condition is found where significant unsteady total lift reduction can occur. The root mean square lift reduction is limited by an unsteady stall process on the plate.  相似文献   

16.
Measurements of the spatial and time variation of two components of the velocity have been made over a sinusoidal solid wavy boundary with a height to length ratio of 2a/λ = 0.10 and with a dimensionless wave number of α+ = (2π/λ)(v/u ?) = 0.02. For these conditions, both intermittent and time-mean flow reversals are observed near the troughs of the waves. Statistical quantities that are determined are the mean streamwise and normal velocities, the root-meansquare of the fluctuations of the streamwise and normal velocities, and the Reynolds shear stresses. Turbulence production is calculated from these measurements. The flow is characterized by an outer flow and by an inner flow extending to a distance of about α?1 from the mean level of the surface. Turbulence production in the inner region is fundamentally different from flow over a flat surface in that it is mainly associated with a shear layer that separates from the back of the wave. Flow close to the surface is best described by an interaction between the shear layer and the wall, which produces a retarded zone and a boundary-layer with large wall shear stresses. Measurements of the outer flow compare favorably with measurements over a flat wall if velocities are made dimensionless by a friction velocity defined with a shear stress obtained by extrapolating measurements of the Reynolds stress to the mean levels of the surface (rather than from the drag on the wall).  相似文献   

17.
The effect of bed roughness on an iso-kinetic chemical plume released into the logarithmic region of the bed boundary layer of an open channel flow is examined. The bed roughness is varied systematically to generate flows in the smooth (painted polyethylene sheets), transitional rough (2.5-mm and 11.5-mm gravel beds), and fully rough (21.0-mm gravel bed) regimes. Concentration fields are measured in horizontal planes using the planar laser-induced fluorescence (PLIF) technique. The time-averaged concentration follows a self-similar Gaussian transverse profile for each bed roughness. The plume width grows as a power law function of the streamwise distance (i.e., with n0.75 near the source and n0.5 farther downstream). As the bed roughness increases, the variance of the fluctuations is smaller and decreases faster. Near the plume source, the transverse profiles of the standard deviation of the scalar fluctuations are self-similar and Gaussian. For the two rougher beds, the transverse distribution of the standard deviation transitions downstream to a bi-modal profile. The probability density functions (PDFs) of the concentration fluctuations near the plume source are highly skewed distributions. Increased bed roughness accelerates the approach of the PDF towards a Gaussian distribution.  相似文献   

18.
The flow around surface-mounted, finite-height square prisms at a Reynolds number of Re = 4.2 × 104 was investigated experimentally in a low-speed wind tunnel using particle image velocimetry. The thickness of the boundary layer on the ground plane relative to the width of the prism was δ/D = 1.5. Four prism aspect ratios were tested, AR = 9, 7, 5, and 3, to study how the aspect ratio influences the flow field close to the prism. Upstream of the prism, lowering the aspect ratio from AR = 9 to AR = 3 causes the stagnation point on the upstream face to move closer to the free end, but there is no influence on the location and strength of the horseshoe vortex. Lowering the aspect ratio from AR = 9 to AR = 3 causes the cross-stream vortices in the upper and lower halves of the wake to move downstream and upstream, respectively; the latter vortex is absent for AR = 3, suggesting this prism sits below the critical aspect ratio. Above the free end of the prism, within the region of separated flow, lowering the aspect ratio from AR = 9 to AR = 3 shifts the location of the cross-stream vortex farther downstream. For the prism of AR = 3, reverse flow above the free end is stronger yet more unsteady compared to the more slender prisms, while the streamwise edge vortices are smaller and weaker.  相似文献   

19.
A transonic backward-facing step flow, at a free stream Mach number of 0.8 and a Reynolds number of 1.86 × 105 with respect to the step height, was investigated experimentally by means of planar and stereo Particle Image Velocimetry (PIV) measurements for multiple fields of view. The primary aim of this analysis is to examine whether the large temporal variations of the reattachment location is associated with the presence of large scale coherent flow structures. The mean flow reattaches ≈6.1±0.2 times the step height downstream of the step. This value fluctuates temporally as much as ±3 step heights. Measurements of the wake flow in horizontal planes show that the strong variations of the reattachment length are associated with spanwise variations of the streamwise velocity. Two-point correlations revealed large–scale coherent regions with a length of up to 7 step heights and a dominant spanwise wave-length of 1.5…2.5 step heights. Furthermore, close to the step large structures are found, which span more than 5 step heights in spanwise direction. The Reynolds stress distribution of the separated region strongly suggests that the initial streamwise momentum is transferred to the vertical component as well as to the spanwise component in comparable portions by the deformation of the initial Kelvin-Helmholtz vortices and the generation of secondary ones. As a result, the separated shear layer is characterized by eddies of various sizes and orientations. The mean flow field only shows the primary separation bubble and a secondary recirculation region. No stationary streamwise vortices could be found for the tested Reynolds number.  相似文献   

20.
We consider the flow and heat transfer caused by a strong external flow passing over a hot surface with uniform surface suction. When the Péclet number based on the external velocity is sufficiently large, the resulting thermal boundary layer develops in a nonsimilar manner until it attains an asymptotic state which is independent of the streamwise coordinate, x, when it is dominated by the surface suction. For sufficiently large, but moderate, values of the Darcy–Rayleigh number this boundary layer becomes unstable to streamwise vortex disturbances. We employ a parabolic solver to determine how such disturbances, when placed very close to the leading edge, evolve with distance downstream. Neutral stability is then defined to be when a suitable energy functional ceases to decay/grow as x increases. Thus a neutral curve may be mapped out based upon the behaviour of this functional. Given that the uniform asymptotic state is well known to admit subcritical instabilities, our linearised analysis is extended into the nonlinear domain and the effect of different magnitudes of disturbance is ascertained. It is found that a surprisingly rich variety of vortex pattern emerges which is sometimes sensitively dependent on the values of the governing parameters. These patterns include wavy vortices and abrupt changes in perceived wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号