首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Supersonic flight of aerospace planes is of marked interest since several flow regimes characterized by different local flow structures have to be flown through. This problem was investigated experimentally for the hypersonic research configuration ELAC 1. The aim of the study was to detect the influence of the rounded leading edge, of the thickness distribution prescribed, and of the Reynolds number, especially on the flow on the leeward side of the configuration. The experiments were carried out in the transonic wind tunnel of Aerodynamisches Institut of RWTH Aachen, at a freestream Mach number Ma =2, a unit Reynolds number of Re =13×106, angles of attack between ?3°?α?10°, and in a wind tunnel of the Institute for Theoretical and Applied Mechanics of the Russian Academy of Sciences in Novosibirsk. The freestream Mach numbers covered in these experiments were varied between 2?Ma ?4, freestream Reynolds numbers per unit length between 25×106?Re ?56×106 and angles of attack between ?3°?α?10°. Flow visualization studies, measurements of surface pressure distributions and of aerodynamic forces were used to analyze the flow. The results, which will also be compared with numerical data, clearly indicate marked differences in the location of the separation and reattachment lines, and the formation of the primary, secondary and tertiary vortices, for the flow regimes investigated.  相似文献   

2.
The current work experimentally investigates the flow characteristics of an air jet impinging on an open rotor-stator system with a low non-dimensional spacing, G?=?0.02, and with a very low aspect ratio, e/D?=?0.25. The rotational Reynolds numbers varied from $0.33\times10^5$ to $5.32\times10^5$ , while the jet Reynolds numbers ranged from 17.2?×?103 to 43?×?103. Particle image velocimetry (PIV) measurements were taken along the entire disk diameter in three axial planes. From the obtained PIV velocity fields, the flow statistics were computed. A recirculation flow region, which was centered at the impingement point and possessed high turbulence intensities, was observed. Local peaks in root-mean-square fluctuating velocity distributions appeared in the recirculation region and near the periphery, respectively. Proper orthogonal decomposition analysis was applied to the cases of the jet impinging on the rotor with and without rotation to reveal the coherent structures in the jet region.  相似文献   

3.
Velocity and passive scalar (temperature) measurements have been made in the near field of a round jet with and without obstructing grids placed at the jet exit. The Reynolds number Re D (based on the exit centreline velocity and nozzle diameter) is 4.9 × 104 and the flow is incompressible, while the temperature rise does not affect the velocity behaviour. The streamwise development and radial spreading of the passive scalar are attenuated, relative to the unobstructed jet. Close to the jet outlet, the spatial similarity of the moments (up to the third-order) of velocity fluctuations is improved, when the jet is perturbed. An explanation, based on the reduced effect of the large coherent structures in the developing region, is provided.  相似文献   

4.
Round air jet development downstream from an abrupt contraction coupled to a uniform circular tube extension with length to diameter ratio L/D?=?1.2 and L/D?=?53.2 is studied experimentally. Smoke visualisation and systematic hot film velocity measurements are performed for low to moderate Reynolds numbers 1130?<?Re b ?<?11320. Mean and turbulent velocity profiles are quantified at the tube exit and along the centerline from the tube exit down to 20 times the diameter D. Flow development is seen to be determined by the underlying jet structure at the tube exit which depends on Reynolds number, initial velocity statistics at the tube exit and the presence/absence of coherent structures. It is shown that the tube extension ratio L/D as well as the sharp edged abrupt contraction influence the initial jet structure at the tube exit. For both L/D ratios, the presence of the abrupt contraction results in transitional jet flow in the range 2000?<?Re b ?<?4000 and in flow features associated with forced jets and high Reynolds numbers Re b ?>?104. The tube extension ratio L/D downstream from the abrupt contraction determines the shear layer roll up so that for L/D?=?1.2 flow visualisation suggests the occurrence of toroidal vortices for Re b ?<?4000 whereas helical vortices are associated with the transitional regime for L/D?=?53.2. Found flow features are compared to features reported in literature for smooth contraction nozzles and long pipe flow.  相似文献   

5.
An experimental investigation of vortex generators has been carried out in turbulent backward-facing step (BFS) flow. The Reynolds number, based on a freestream velocity U0 = 10 m/s and a step height h = 30 mm, was Reh = 2.0 × 104. Low-profile wedge-type vortex generators (VGs) were implemented on the horizontal surface upstream of the step. High-resolution planar particle image velocimetry (2D-2C PIV) was used to measure the separated shear layer, recirculation region and reattachment area downstream of the BFS in a single field of view. Besides, time-resolved tomographic particle image velocimetry (TR-Tomo-PIV) was also employed to measure the flow flied of the turbulent shear layer downstream of the BFS within a three-dimensional volume of 50 × 50 × 10 mm3 at a sampling frequency of 1 kHz. The flow control result shows that time-averaged reattachment length downstream of the BFS is reduced by 29.1 % due to the application of the VGs. Meanwhile, the Reynolds shear stress downstream of the VGs is considerably increased. Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) have been applied to the 3D velocity vector fields to analyze the complex vortex structures in the spatial and temporal approaches, respectively. A coherent bandwidth of Strouhal number 0.3 < Sth < 0.6 is found in the VG-induced vortices, and moreover, Λ-shaped three-dimensional vortex structures at Sth = 0.37 are revealed in the energy and dynamic approaches complementarily.  相似文献   

6.
Based on the finite volume method, the flow past a spinning circular cylinder at a low subcritical Reynolds number (Re =1 × 10 5), high subcritical Reynolds number (Re =1.3 ×10 5), and critical Reynolds number (Re =1.4 ×10 5) were each simulated using the Navier-Stokes equations and the γ-Re ?? transition model coupled with the SST k?ω turbulence model. The system was solved using an implicit algorithm. The freestream turbulence intensity decay was effectively controlled by the source term method proposed by Spalart and Rumsey. The variations in the Magnus force as a function of the spin ratio, α were obtained for the three Reynolds numbers, and the flow mechanism was analyzed. The results indicate that the asymmetric transitions induced by spin affect the asymmetric separations at the top and bottom surfaces of the circular cylinder, which further affects the pressure distributions at the top and bottom surfaces of the circular cylinder and ultimately result in a negative Magnus force, whose direction is opposite to that of the classical Magnus force. This study is the first to use a numerical simulation method to predict a negative Magnus force acting on a spinning circular cylinder. At the low subcritical Reynolds number, the Magnus force remained positive for all spin ratios. At the high subcritical Reynolds number, the sign of the Magnus force changed twice over the range of the spin ratio. At the critical Reynolds number, the sign of the Magnus force changed only once over the range of the spin ratio. For relatively low spin ratios, the Magnus force significantly differed by Reynolds number; however, this variation diminished as the spin ratio increased.  相似文献   

7.
The understanding of the behaviour of the flow around surface protuberances in hypersonic vehicles is developed and an engineering approach to predict the location and magnitude of the highest heat transfer rates in their vicinity is presented. To this end, an experimental investigation was performed in a hypersonic facility at freestream Mach numbers of 8.2 and 12.3 and Reynolds numbers ranging from Re /m = 3.35 × 106 to Re /m = 9.35 × 106. The effects of protuberance geometry, boundary layer state, freestream Reynolds number and freestream Mach numbers were assessed based on thin-film heat transfer measurements. Further understanding of the flowfield was obtained through oil-dot visualizations and high-speed schlieren videos. The local interference interaction was shown to be strongly 3-D and to be dominated by the incipient separation angle induced by the protuberance. In interactions in which the incoming boundary layer remains unseparated upstream of the protuberance, the highest heating occurs adjacent to the device. In interactions in which the incoming boundary layer is fully separated ahead of the protuberance, the highest heating generally occurs on the surface just upstream of it except for low-deflection protuberances under low Reynolds freestream flow conditions in which case the heat flux to the side is greater.  相似文献   

8.
The article reports on blending of the Leray-α regularization with the conventional Smagorinsky subgrid-scale closure as an option for large-eddy-simulation of turbulent flows at very high Reynolds number on coarse meshes. The model has been tested in the self-similar far-field region of a jet at a range of Reynolds numbers spanning over two decades (4×103, 4×104 and 4×105) on two very coarse meshes of 2×105 and 3×104 mesh cells. The results are compared with the well-resolved DNS for $Re_D=4\times 10^3$ on 15 million cells and experimental data for higher Re numbers. While the pure Leray-α can fail badly at high Re numbers on very coarse meshes, a blending of the two strategies by adding a small amount of extra-dissipation performs well even at a huge jet Reynolds number of $Re_D=4\times 10^5$ on a very coarse mesh (2×105 cells), despite the ratio of the typical mesh spacing to the Kolmogorov length exceeding 300. It is found that the main prerequisite for successful LES, both for the classic Smagorinsky and the blended Leray-α/Smagorinsky model, is to resolve the shear-length $L_s=\sqrt{\varepsilon/{\cal S}^3}$ (where ${\cal S}$ is the shear-rate modulus), defined by the constraint Δ/L s ?<?1, where Δ is the typical mesh-cell size. For the mixed Leray-α/Smagorinsky model the regularization parameter should also be related to the shear-length rather than the local mesh size or Reynolds number, for which we propose a guide criterion α?=?0.15÷0.3 L s .  相似文献   

9.
Preliminary results of the interaction of a supersonic, radiatively cooled plasma jet with an ambient gas are presented. The experimental setup consists of a radial foil, a mum-thick aluminium disc held between two concentric electrodes and subjected to a 1.4 MA, 250-ns current pulse from the MAGPIE generator. The plasma flow, with typical velocities of ~70?C90?km/s, is produced by the JB force acting on the plasma ablated from the foil. A jet is formed from the convergence of this ablated plasma on the axis of the system. A new setup allows the jet to interact with an argon ambient (particle density N ~1016-17 cm?3) from a supersonic gas nozzle (Mach ~9). First results are characterised by the presence of several (previously unseen) shock structures, which are formed from the interaction of the jet with the argon ambient.  相似文献   

10.
The supersonic (M = 4.85) flow past a cylinder with a forward insertmade of a highlyporous cellular material is numerically modeled within the framework of the Reynolds-averaged Navier–Stokes equations. The air flow in the gas-permeable insert is described on the basis of a skeleton model of a highly-porous medium, whose determining parameters are the porosity coefficient (95%) and the pore dimensions (1 mm) of the actual cellular material. The aerodynamic drag coefficients of the model with different lengths of the porous forward insert are calculated on the unit Reynolds number range from 6.9 × 105 to 13.8 × 106 m?1. They are in agreement with the available experimental data, which indicates the adequacy of the proposed skeleton model in describing the actual properties of highly-porous materials.  相似文献   

11.
Large-scale tomographic particle image velocimetry (tomographic PIV) was used to study large-scale flow structures of turbulent convective air flow in an elongated rectangular convection cell. Three flow cases have been investigated, that is, pure forced convection and mixed convection at two different Archimedes numbers. The Reynolds number was constant at Re?=?1.04?×?104 for all cases, while the Archimedes numbers were Ar?=?2.1 and 3.6 for the mixed convection cases, corresponding to Rayleigh numbers of Ra?=?1.6?×?108 and 2.8?×?108, respectively. In these investigations, the size of the measurement volume was as large as 840?mm?×?500?mm?×?240?mm. To allow for statistical analysis of the measured instantaneous flow fields, a large number of samples needed to be evaluated. Therefore, an efficient parallel implementation of the tomographic PIV algorithm was developed, which is based on a version of the simultaneous multiplicative reconstruction technique (SMART). Our algorithm distinguishes itself amongst other features by the fact that it does not store any weighting coefficients. The measurement of forced convection reveals an almost two-dimensional roll structure, which is orientated in the longitudinal cell direction. Its mean velocity field exhibits a core line with a wavy shape and a wavelength, which corresponds to the height and depth of the cell. In the instantaneous fields, the core line oscillates around its mean position. Under the influence of thermal buoyancy forces, the global structure of the flow field changes significantly. At lower Archimedes numbers, the resulting roll-like structure is shifted and deformed as compared to pure forced convection. Additionally, the core line oscillates much more strongly around its mean position due to the interaction of the roll structure with the rising hot air. If the Archimedes number is further increased, the roll-like structure breaks up into four counter-rotating convection rolls as a result of the increased influence of buoyancy forces. Moreover, large-scale tomographic PIV reveals that the orientation of these rolls reflects a ??W??-like shape in the horizontal X?CZ-plane of the convection cell.  相似文献   

12.
The two-equation `low Reynolds number' k-? model of turbulence with a set of universal constants suggested by Launder and Sharma is modified in the present paper. The variability of the turbulent Prandtl number Prt in the energy equation is assumed along with a change of a constant in the dissipation term of the turbulent kinetic energy equation. The turbulent heat transfer is computed for an air flow in a circular pipe for the Reynolds number within the range of 104?4. The modification considerably improves the agreement between the numerical results and the experiment data published in the available literature.  相似文献   

13.
An experimental study of the flow field in a two-dimensional wall jet has been conducted. All measurements were carried out using hot-wire anemometry. The experimental facility has a rectangular slot nozzle of high aspect ratio l/b = 100 (where l and b are the length and height slot, respectively). Mean velocities and Reynolds stresses were determined with three nozzle Reynolds numbers (Re = 1 × 104, 2 × 104 and 3 × 104) and four different inclination angles between the wall and the flow velocity at the nozzle (β = 0°, 10°, 20° and 30°). Results indicate that all wall jets are self-preserving in the developed region. Normal to the wall two regions can be identified: one similar to a plane free jet and the other similar to a boundary layer. Downstream the interaction between these two regions creates a mixed or third region. The logarithmic region increases with the distance from the nozzle and with the Reynolds number. For the inclined wall jet, the spreading rate expressed in terms of jet half-width or maximum velocity decay with respect to the streamwise distance, asymptotes to a linear law. The streamwise locations where the jet becomes self-similar are farther from the exit than in parallel wall jet. The slope of both half-width and maximum velocity decay in the developed region are affected by both wall jet inclination angle and nozzle exit Reynolds number.  相似文献   

14.
Experiments have been performed to investigate the icetransition profiles and heat-transfer characteristics for water flows between two horizontal parallel plates. The experiments are carried out under the condition that upper plate is cooled at uniform temperature kept less than freezing temperature of water, while the lower plate is heated at uniform temperature kept higher than the temperature of water flow. The temperatures of the upper and lower plates range from ?8 to ?14°C and from 10 to 60 °C, respectively, with inlet-water temperature varied from 1.5 to 4.5 °C. The cooling and heating temperature ratios, θc and θh, are ranging from 1.78 to 9.33 and from 1.22 to 39, respectively. By using three kinds of heightH of 16, 30 and 40 mm between the horizontal parallel plates, the Reynolds and Grashof numbers are varied from 3.2 × 102 to 1.5 × 104 and from 3.4 × 103 to 8.97 × 106, respectively. As a result of this investigation two ice-transition modes are observed. The first ice-transition mode is due to an interruption of upper and lower thermal boundary layers, while the second mode is due to an instability of laminar boundary layer formed on water-ice interface. In order to determine the kind of ice-transition mode, criterion correlation formulas including the Reynolds numberRe H , Grashof numberGr H , and heating temperature ratio θh are determined and may be written as follows: For thermal icetransition mode (th.I.T.M.)Re H /(Gr H ·θ h )0.23<1.6×10?3 and for hydrodynamical ice-transition mode (hy.I.T.M.)Re H /(Gr H ·θ h )0.23>2.3×10?3 By introducing the freezing parameterB f , correlation equations for local and mean Nusselt numbers along the water-ice interface at steady-state condition are determined. From the current experimental results it is found that the local Nusselt number may be described as the following equation:Nu x =0.835 Re H 0.278 · B f 0.834 ·x/H)?0.139  相似文献   

15.
Digital time series hot-wire data, acquired in the near field of a turbulent free jet of air issuing from a sharp-edged isosceles triangular orifice, have been post-processed using a phase-averaging procedure to determine the coherent and random contributions to turbulence statistics. The Reynolds number, based on the equivalent diameter of the orifice, was 1.84×105. It was found that momentum transfer by the Reynolds primary shear stress occurs mainly via the coherent primary shear stress.  相似文献   

16.
The effects of freestream turbulence intensity and integral length scale as freestream turbulent parameters on the drag coefficient of a sphere were experimentally investigated in a closed circuit wind tunnel. The Reynolds number, Re = Ud/ν, was varied from 2.2 × 104 to 8 × 104 by using spheres with diameter d of 20, 51 and 102 mm in addition to altering the freestream velocity, U. The freestream turbulence intensity Tu and flow integral length scale Λ were manipulated by the utilization of orifice perforated plates. The proper combination of orifice perforated plate hole diameter, sphere size, and sphere location along the center line of the wind tunnel enabled the independent alterations of turbulence intensity and relative integral length scale (Λ/d) from 1.8% to 10.7% and from 0.1 to 2.6, respectively, at each studied Reynolds number. Results show that over the range of conditions studied, the drag always decreases with increasing Tu and, the critical Reynolds number at which the drag coefficient is dramatically reduced is decreased by increasing Tu. Most interestingly, the drag at any particular Re and Tu may be significantly lowered by reducing Λ/d; this is particularly the case at high Re and Tu.  相似文献   

17.
The unsteady, compressible, Reynolds-averaged Navier-Stokes equations are solved numerically for an oblique shock-wave-induced turbulent boundary layer sepration. For the freestream Mach number 6 and the freestream Reynolds number 66·1 × 106 m?1, a time-dependent computation is performed, using MacCormack's explicit-implicit finite difference method with 82 × 42 grid points. A two-layer eddy viscosity turbulence model is employed in conjunction with a relaxation modification. Comparisons of the mean wall pressure and the mean heat transfer coefficient with the available experimental results are made and the evaluation of unsteady data for surface pressure and heat flux fluctuations is presented. It is found that the fluctuations in heat flux have qualitatively the same features as those of wall pressure but are different quantitatively.  相似文献   

18.
Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38 × 105 based on the jet diameter. Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena, including flow structures, turbulent characters and frequency behaviors, have been studied. The complex flow structures and the relevant flow features are discussed to exhibit the evolution of shock structures, vortical structures and jet shear layers. The strength of the bow shock increases and the sizes of the barrel shock and Mach disk also increase with increasing momentum ratio. Turbulent characters are clarified to be closely related to the flow structures. The jet penetration increases with the increase of the momentum ratio. Moreover, the dominant frequencies of the flow structures are obtained using spectral analysis. The results obtained in this letter provide physical insight in understanding the mechanisms relevant to this complex flow.  相似文献   

19.
The flow around a circular cylinder with a cross-section variation is experimentally investigated. Particle Image Velocimetry (PIV) is used to scrutinize the interaction of the cylinder’s wall with its near wake. The Reynolds number based on the cylinder’s diameter and freestream velocity is 80 × 103, corresponding to the upper subcritical flow regime. At a forcing Strouhal number of St f = 0.02, the maximum vorticity level around the cylinder is reduced by more than 50% as compared to its uncontrolled value. The topology of the bulk flow confined between the primary vortical structure and the cylinder surface is modified resulting in substantial drag reduction.  相似文献   

20.
The effect of cylinder aspect ratio (??H/d, where H is the cylinder height or length, and d is the cylinder diameter) on the drag of a wall-mounted finite-length circular cylinder in both subcritical and critical regimes is experimentally investigated. Two cases are considered: a smooth cylinder submerged in a turbulent boundary layer and a roughened cylinder immersed in a laminar uniform flow. In the former case, the Reynolds number Re d (??U ?? d/??, with U ?? being the free-stream velocity and ?? the fluid viscosity) was varied from 2.61?×?104 to 2.87?×?105, and two values of H/d (2.65 and 5) were examined; in the latter case, Re d ?=?1.24?×?104?C1.73?×?105 and H/d?=?3, 5 and 7. In the subcritical regime, both the drag coefficient C D and the Strouhal number St are smaller than their counterparts for a two-dimensional cylinder and reduce monotonously with decreasing H/d. The presence of a turbulent boundary layer causes an early transition from the subcritical to critical regime and considerably enlarges the Re d range of the critical regime. No laminar separation bubble occurs on the finite-length cylinder immersed in the turbulent boundary layer, and consequently, the discontinuity is not observed in the C D?CRe d and St?CRe d curves. In the roughened cylinder case, the Re d range of the critical regime grows gradually with decreasing H/d, while the C D crisis becomes less obvious. In both cases, H/d has a negligible effect on the critical value of Re d at which transition occurs from the subcritical to critical regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号