首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recent discoveries of the novel properties of arsenides prompt us to theoretically predict the tetragonal AsTiZr ternary compound under pressure, in order to exploit new functional materials. The structure, elastic and thermodynamic properties of AsTiZr have been investigated under various pressures, based on density functional theory (DFT). For the sake of consistency, the approach of the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) was used. The calculated structural data at zero pressure are in good agreement with previous report. The dependence of relative changes of lattice parameters (a0 and c0) and volume V0, elastic constants, bulk, shear and Young's modulus, and Debye temperature on pressure has been investigated. The thermodynamic properties like heat capacity C, enthalpy E, free energy F and entropy S with pressure are successfully obtained and discussed.  相似文献   

2.
3.
The elastic and thermodynamic properties of CsCl-type structure CaB6 under high pressure are investigated by first-principles calculations based on plane-wave pseudopotential density functional theory method within the generalized gradient approximation (GGA). The calculated lattice parameters of CaB6 under zero pressure and zero temperature are in good agreement with the existing experimental data and other theoretical data. The pressure dependences of the elastic constants, bulk modulus B (GPa), and its pressure derivative B′, shear modulus G, Young's modulus E, elastic Debye temperature ΘB, Zener's anisotropy parameter A, Poisson ratios σ, and Kleinmann parameter ζ are also presented. An analysis for the calculated elastic constants has been made to reveal the mechanical stability of CaB6 up to 100 GPa. The thermodynamic properties of the CsCl-type structure CaB6 are predicted using the quasi-harmonic Debye model. The pressure-volume-temperature (P-V-T) relationship, the variations of the heat capacity CV, Debye temperature ΘD, and the thermal expansion α with pressure P and temperature T, as well as the Grüneisen parameters γ are obtained systematically in the ranges of 0-100 GPa and 0-2000 K.  相似文献   

4.
王斌  刘颖  叶金文 《物理学报》2012,61(18):186501-186501
利用基于密度泛函理论的第一性原理平面波赝势方法 并结合准谐徳拜模型研究了NaCl结构的TiC在高压下的弹性性质、电子结构和热力学性质. 计算所得零温零压下的晶格常数、体弹模量及弹性常数与实验值符合得很好. 零温下弹性常数和弹性模量随压强增大而增大. 通过态密度和电荷密度的分析, Ti-C键随压强增大而增强. 运用准谐德拜模型, 成功计算了TiC在高温高压下的体弹模量、熵、热膨胀系数、徳拜温度、 Grüneisen参数和比热容. 结果表明压强对体弹模量、热膨胀系数和徳拜温度的影响大于温度对其的影响. 热容随着压强升高而减小, 在高温高压下, 热容接近Dulong-Petit极限.  相似文献   

5.
密度泛函理论研究高温高压下UO2弹性与热力学性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用第一性原理与准谐德拜模型研究UO2在高温高压条件下的弹性与热力学性能。UO2在高温高压下仍属离子型晶体,并且弹性性能计算表明,四角方向剪切常数在高温与高压下均保持稳定。高温下弹性常数C44没有明显变化,而高压下C44迅速增大。体积模量、剪切模量与杨氏模量均随压强增加而增大;高温条件下,体积模量、剪切模量与杨氏模量也未出现明显的降低,表明UO2在高温度高压下均可保持良好的力学性能。不同压强下,UO2定容热容均随温度迅速增大,并在1000 K 附近趋近于杜隆-佩蒂特极限。德拜温度则随温度降低,随压强升高。在低于室温条件下,热膨胀系数随温度急剧增加;温度继续增加,系数的增加趋势则逐渐变缓。计算结果还表明,UO2的热膨胀系数在相同条件下,远小于其他核材料。  相似文献   

6.
<正>The elastic and thermodynamic properties of NbN at high pressures and high temperatures are investigated by the plane-wave pseudopotential density functional theory(DFT).The generalized gradient approximation(GGA) with the Perdew-Burke-Ernzerhof(PBE) method is used to describe the exchange-correlation energy in the present work.The calculated equilibrium lattice constant a0,bulk modulus B0,and the pressure derivative of bulk modulus B0’ of NbN with rocksalt structure are in good agreement with numerous experimental and theoretical data.The elastic properties over a range of pressures from 0 to 80.4 GPa are obtained.Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail.It is indicated that NbN is highly anisotropic in both longitudinal and shear-wave velocities. According to the quasi-harmonic Debye model,in which the phononic effect is considered,the relations of(V-V0)/V0 to the temperature and the pressure,and the relations of the heat capacity CV and the thermal expansion coefficientαto temperature are discussed in a pressure range from 0 to 80.4 GPa and a temperature range from 0 to 2500 K.At low temperature,CV is proportional to T3 and tends to the Dulong-Petit limit at higher temperature.We predict that the thermal expansion coefficientαof NbN is about 4.20×10-6/K at 300 K and 0 GPa.  相似文献   

7.
The thermodynamic, elastic, elastic anisotropy and minimum thermal conductivity of β-GaN are investigated at ambient pressure and high temperature by using first-principles calculations method with the ultrasoft psedopotential scheme. The elastic constants calculations reveal β-GaN is mechanically stability at ambient pressure and high temperature. The elastic modulus (Poisson's ratio, shear modulus and Young's modulus) decreases with increasing temperature. The calculations of anisotropy show that β-GaN has a larger elastic anisotropy in Poisson's ratio, shear modulus, Young's modulus and Zener anisotropy index. In addition, when the temperature increases from 0 to 1500 K, the elastic anisotropy decreases for β-GaN. The quasi-harmonic Debye model is successfully applied to determine the thermodynamic properties at different pressures and temperatures. Using the quasi-harmonic Debye model, the thermodynamic properties including the Debye temperature, Grüneisen parameter, the heat capacity, adiabatic bulk modulus, and the thermal expansion coefficients of β-GaN are predicted under high temperature and high pressure.  相似文献   

8.
The transition phase of PtN from zincblende (ZB) structure to rocksalt (RS) structure is investigated by ab initio plane-wave pseudopotential density functional theory method, and the thermodynamic properties of the ZB and RS structures under high pressure and temperature are obtained through the quasi-harmonic Debye model. The transition phase from the ZB structure to the RS structure occurs at the pressure of 18.2 GPa, which agrees well with other calculated values. Moreover, the dependences of the relative volume V/V0 on the pressure P, the Debye temperature Θ and heat capacity CV on the pressure P, together with the heat capacity CV on the temperature T are also successfully obtained.  相似文献   

9.
The elastic constants and thermodynamic properties of Li2O for high temperatures and pressures are calculated by the ab initio unrestricted Hartree-Fock (HF) linear combination of atomic orbital (LCAO) periodic approach. The lattice constant, elastic constants, Debye temperature, and thermal expansion coefficient obtained are in good agreement with the available experimental data and other theoretical results. It is found that at zero pressure the elastic constants C11, C12 and C44, bulk modulus B and Debye temperature ΘD decrease monotonically over the wide range of temperatures from 0 to 1100 K. When the temperature , C12 approaches zero, consistently with the transition temperature 1200 K. However, with increasing pressure, they all increase monotonically and the anisotropy will weaken.  相似文献   

10.
Using the first-principles full-potential linear muffin-tin orbital method within the local density approximation, we have studied the structural, elastic, thermodynamic, and electronic properties of the ideal-cubic perovskite BiGaO3. It is found that this compound has an indirect band gap. The valence band maximum (VBM) is located at Γ-point, whereas the conduction band minimum (CBM) is located at X-point. The pressure and volume dependences of the energy band gaps have been calculated. The elastic constants at equilibrium are also determined. We derived the bulk and shear moduli, Young’s modulus, and Poisson’s ratio. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of the bulk modulus, heat capacities, and Debye temperature with pressure and temperature are successfully obtained.  相似文献   

11.
The structural and lattice dynamical properties of TmX (X=As, P) compounds were investigated using normconserving pseudopotentials within the generalized gradient approximation correction (GGA) of Perdew–Burke–Ernzerhof (PBE) in the framework of density functional theory (DFT). The structural parameters (a0, B, B′, Ecoh) were determined through total energy and interatomic force minimization and the overall agreement was found to be good. The pressure dependence of the ratios of normalized lattice parameters a/a0, normalized volume V/V0, bulk modulus, elastic constants, Zener anisotropy factor, Poisson's ratio, Young's modulus, shear modulus, and the brittleness were presented and discussed. The thermodynamical properties such as thermal expansion, heat capacity, Debye temperature, and Grüneisen parameter were calculated employing the quasi-harmonic Debye model at different temperatures (0–1000 K) and pressures (0–30 GPa). The phonon dispersion curves and corresponding density of states (DOS) of TmX (X=As, P) were also obtained, and the salient results were interpreted.  相似文献   

12.
The transition phase of GaN from zincblende (ZB) structure to rocksalt structure (RS) is investigated by ab initio plane-wave pseudopotential density functional theory method, and the thermodynamic properties of the ZB and RS structures are obtained through the quasi-harmonic Debye model. We find that the transition phase from the ZB structure to the RS structure occurs at the pressure of 42.2 GPa, which is in good agreement with other calculated values. Moreover, the dependences of the relative volume V/V0 on the pressure P, the Debye temperature Θ and heat capacity CV on the pressure P, as well as the heat capacity CV on the temperature T are also successfully obtained.  相似文献   

13.
Structural, elastic, electronic and thermal properties of the MAX phase Nb2SiC are studied by means of a pseudo-potential plane-wave method based on the density functional theory. The optimized zero pressure geometrical parameters are in good agreement with the available theoretical data. The effect of high pressure, up to 40 GPa, on the lattice constants shows that the contractions along the c-axis were higher than those along the a-axis. The elastic constants Cij and elastic wave velocities are calculated for monocrystal Nb2SiC. Numerical estimations of the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, average sound velocity and Debye temperature for ideal polycrystalline Nb2SiC aggregates are performed in the framework of the Voigt-Reuss-Hill approximation. The band structure shows that Nb2SiC is an electrical conductor. The analysis of the atomic site projected densities and the charge density distribution shows that the bonding is of covalent-ionic nature with the presence of metallic character. The density of states at Fermi level is dictated by the niobium d states; Si element has a little effect. Thermal effects on some macroscopic properties of Nb2SiC are predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variations of the primitive cell volume, volume expansion coefficient, bulk modulus, heat capacity and Debye temperature with pressure and temperature in the ranges of 0-40 GPa and 0-2000 K are obtained successfully.  相似文献   

14.
The structural, elastic, electronic and thermodynamic properties of the rhombohedral topological insulator Bi2Se3 are investigated by the generalized gradient approximation (GGA) with the Wu–Cohen (WC) exchange-correlation functional. The calculated lattice constants agree well with the available experimental and other theoretical data. Our GGA calculations indicate that Bi2Se3 is a 3D topological insulator with a band gap of 0.287 eV, which are well consistent with the experimental value of 0.3 eV. The pressure dependence of the elastic constants Cij, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio σ of Bi2Se3 are also obtained successfully. The bulk modulus obtained from elastic constants is 53.5 GPa, which agrees well with the experimental value of 53 GPa. We also investigate the shear sound velocity VS, longitudinal sound velocity VL, and Debye temperature ΘE from our elastic constants, as well as the thermodynamic properties from quasi-harmonic Debye model. We obtain that the heat capacity Cv and the thermal expansion coefficient α at 0 GPa and 300 K are 120.78 J mol?1 K?1 and 4.70 × 10?5 K?1, respectively.  相似文献   

15.
利用密度泛函理论研究了高温高压下Zr2AlC的结构和热力学性质,计算得到Zr2AlC的晶格参数与实验值符合较好.研究了Zr2AlC的弹性常数、体模量、剪切模量和杨氏模量等力学性质随压力变化的趋势.同时研究了维氏硬度随压力的变化趋势.通过计算得到的杨氏模量预测了Zr2AlC的弹性各向异性.最后,基于准简谐德拜模型,成功预测了Zr2AlC的德拜温度、热容、热膨胀系数和Grüneisen参数随着压强和温度的变化关系.  相似文献   

16.
The structural, elastic and electronic properties of BaZnO2 under pressure are investigated by the plane wave pseudopotential density functional theory (DFT). The calculated lattice parameters and unit cell volume of BaZnO2 at the ground state are in good agreement with the available experimental data and other theoretical data. The pressure dependences of elastic constants Cij, bulk modulus B, shear modulus G, B/G, Poisson’ s ratio σ, Debye temperature Θ and aggregate acoustic velocities VP and VS are systematically investigated. It is shown that BaZnO2 maintains ductile properties under the applied pressures. Analysis for the calculated elastic constants has been made to reveal the mechanical stability and mechanical anisotropy of BaZnO2. At the ground state, the calculated compressional and shear wave velocities are 8.26 km/s and 1.81 km/s, respectively, and the Debye temperature Θ is 240.8 K. The pressure dependences of the density of states and the bonding property of BaZnO2 are also investigated.  相似文献   

17.
The elastic and electronic structure properties of YNi2B2C under pressure are investigated by performing the generalized gradient approximation (GGA) and local density approximation (LDA) correction scheme in the frame of density functional theory (DFT). The pressure dependences of the normalized lattice parameters a/a0 and c/c0, the ratio c/a, and the normalized primitive volume V/V0 of YNi2B2C are also obtained. The lattice constants and bulk modulus obtained are in agreement with the available experimental and other theoretical data. We have also studied the pressure dependences of elastic properties. It is found that, as pressure increases, the elastic constants C11, C33, C66, C12, and C13 increase, the variation of elastic constant C44 is not obvious. Moreover, our compressional and shear wave velocities VL=6.99 km/s and VS=3.67 km/s as well as the Debye temperature Θ=549.7 K at 0 GPa compare favorably with the available experimental data. The pressure dependences of band structures, energy gap and density of states are also investigated.  相似文献   

18.
ABSTRACT

The structural, electronic, elastic and thermodynamic properties of LuX (X = N, Bi and Sb) based on rare earth into phases, Rocksalt (B1) and CsCl (B2) have been investigated using full-potential linearized muffin-tin orbital method (FP-LMTO) within density functional theory. Local density approximation (LDA) for exchange-correlation potential and local spin density approximation (LSDA) are employed. The structural parameters as lattice parameters a0, bulk modulus B, its pressure derivate B’ and cut-off energy (Ec) within LDA and LSDA are presented. The elastic constants were derived from the stress–strain relation at 0 K. The thermodynamic properties for LuX using the quasi-harmonic Debye model are studied. The temperature and pressure variation of volume, bulk modulus, thermal expansion coefficient, heat capacities, Debye temperature and Gibbs free energy at different pressures (0–50 GPa) and temperatures (0–1600 K) are predicted. The calculated results are in accordance with other data.  相似文献   

19.
Numerical calculations based on the full potential muffin-tin orbitals method (FP-LMTO) within the local density approximation (LDA) and the local spin-density approximation (LSDA) to investigate the structural, electronic and thermodynamic properties of filled skutterudite EuFe4Sb12 are presented. The electronic band structure and density of states profiles prove that this material is a conductor. The present investigation is also extended to the elastic constants, such as the bulk modulus B, anisotropy factor A, shear modulus G, young's modulus E, Poisson's ratio ν, and the B/G ratio with pressure in the range of 0–40 GPa. The sound velocities and Debye temperatures are also predicted from the above constants. The variations of the primitive cell volume, expansion coefficient α, bulk modulus B, heat capacity (Cp and Cv), Debye temperature θD, Helmholtz free energy A, Gibbs free energy G, entropy S, and internal energy U with pressure and temperature in the range 0–3000 K are calculated successfully.  相似文献   

20.
The elastic constants and thermodynamic properties of c-BN are calculated using the first-principles plane wave method with the relativistic analytic pseudopotential of the Hartwigen, Goedecker and Hutter (HGH) type in the frame of local density approximation and using the quasi-harmonic Debye model, separately. Moreover, the dependences of the normalized volume V/V0 on pressure P, as well as the bulk modulus B, the thermal expansion α, and the heat capacity CV on pressure P and temperature T are also successfully obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号