首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
氯化稀土乙二醇二甲醚配合物催化丁二烯聚合   总被引:1,自引:1,他引:0  
以Nd2O3、(CH3)3SiCl和乙二醇二甲醚(DME)为原料,合成了NdCl3·2DME配合物,并将其用于催化丁二烯聚合。 考察了助催化剂种类与用量、陈化温度和聚合时间对聚合的影响。 结果表明,以烷基铝与MAO共同作为助催[JP2]化剂时具有高聚合活性,而单独以烷基铝或甲基铝氧烷(MAO)为助催化剂时聚合活性很低。 当n(Nd)∶n(AlR3)∶n(MAO)=1∶30∶45时,催化活性最高。 陈化温度对聚合活性、聚合物结构及相对分子质量均有较大的影响。 陈化温度过低或者过高,聚合活性、聚丁二烯cis-1,4含量和相对分子质量均降低;陈化温度为50 ℃时,具有最高聚合活性和最高cis-1,4含量。 NdCl3·2DME催化体系所得聚丁二烯的cis-1,4含量高达98.7%(IR),而1,4-结构总含量高达99.6%(1H NMR)。  相似文献   

2.
应用稀土化合物:环烷酸钕Nd(naph)_3和二(2-乙基己基)磷酸钕Nd·(P_(204)_3分别与三异丁基铝Al(i-Bu)_3组成络合催化剂引发苯乙烯均聚及其与二乙烯苯共聚。适宜的聚合温度为50℃:[Nd]=3×10~(-5)mol/ml;[M]=3×10~(-3)mol/ml;Al/Nd=10(摩尔比),并且催化剂按以下次序配制:钕化合物→溶剂→苯乙烯→三异丁基铝,苯乙烯的转化率在90%以上。溶剂种类及聚合条件不同,制得的聚苯乙烯可为白色或黄色粉末状无定形聚合物,分子量几百至上万。聚合体系中添加PeCl_3能抑制黄色产生。在共聚反应中,二乙烯苯比苯乙烯显示较高的反应活性。  相似文献   

3.
以5-氨基邻甲酚与二苯基氯化膦为原料,通过取代反应合成了一种含有PNP和P—O结构的膦配体并确定了其结构.通过与Cr(acac)_3原位生成以及与Cr Cl3(THF)_3预制的方法制成配合物作为主催化剂,以甲基铝氧烷(MAO)为助催化剂,形成催化体系用于催化乙烯齐聚反应,考察了溶剂种类、反应温度、反应压力及Al/Cr摩尔比对该催化剂的活性和选择性的影响,并与原位生成的邻位和对位氨基酚类膦配体催化体系催化乙烯齐聚反应效果进行了对比.试验结果表明,以环己烷为溶剂,MAO为助催化剂,当反应温度为50℃、反应压力为2.5 MPa、Al/Cr摩尔比为700的条件下,该催化剂的活性最高达5.91×10~6 g/(mol·Cr·h),液相产物中1-辛烯选择性高达72.94%,1-己烯和1-辛烯总的选择性为82.11%.  相似文献   

4.
稀土络合催化环氧乙烷聚合   总被引:3,自引:1,他引:3  
以稀土化合物-二(2-乙基己基)膦酸钕[Nd(P_(204)_3],三异丁基铝和水组成的络合催化剂,引发环氧乙烷聚合.结果表明,稀土络合催化剂是制备高分子量聚环氧乙烷的新型催化剂.聚合反应速度与环氧乙烷浓度呈一级关系,与Nd(P_(204))_3浓度呈一级关系.聚合的总活化能E_α=33.8kJ/mol,表观速率常数K_p=1.67×10~(-3)s~(-1)·mol~(-1)·1  相似文献   

5.
以甲基铝氧烷(MAO)为助催化剂的茂金属催化剂虽然具有催化活性高、分子量分布窄、聚合物化学组成均匀等优点,但其极高的Al/Zr比和聚合物颗粒形态差等缺点限制了其工业化应用,因此对茂金属催化剂的负载化成为近年来的研究热点.在众多的载体中,球形MgCl2是研究得很少的一类载体,文献中曾采用先负载主催化剂茂金属配合物,聚合时再加入助催化剂MAO的方法[1],由于加入的MAO与主催化剂的络合能力很强,会使部分载上的主催化剂溶解下来,成为均相聚合[2,3],导致聚合物颗粒形态差,且粘釜现象严重.我们则采用相反的思路,即先将助催化剂MAO负载在球形MgCl2上,制得MgCl2/MAO,在聚合前再将MgCl2/MAO与Et[Ind]2ZrCl2混合陈化,并立即在少量烷基铝活化下引发乙烯聚合[4],实验结果表明,该催化剂聚合活性高、聚合物的颗粒形态好、且不粘釜,是一种新型的载体催化剂.由于烷基铝的加入可使催化剂的活性大幅度提高,所以本文将烷基铝也称作助催化剂,来研究其对该载体催化剂催化乙烯聚合的影响.  相似文献   

6.
Nd(C_8H_(11))Cl_2·3THF与不同烷基铝〔Et_3Al,i-Bu_3Al,HAl(i-Bu_2)〕组成的催化体系可催化丁二烯聚合。实验结果表明,催化剂活性取决于所用的烷基铝、铝钕比和催化剂用量,而溶剂对催化活性影响不大。聚合物的微观结构则不受烷基铝种类、溶剂、铬钕比和催化剂用量的影响,均可得到高顺式(97—98%)聚丁二烯。  相似文献   

7.
由Nd(oct)3(Nd)、Al(i-Bu)3(Al)和C4H9Cl(BCL)三组分组成稀土催化体系,催化苯乙烯(St)在环己烷溶剂中进行配位聚合,考察Al/Nd摩尔比、BCL/Nd摩尔比、陈化温度、陈化时间、催化剂用量、聚合温度与时间等因素对苯乙烯聚合、催化活性以及聚苯乙烯产物(PS)分子量与分子量分布的影响.当Al/Nd=8-12(摩尔比),BCL/Nd=5-25(摩尔比),Ta=40-50℃,ta=6-20 h,Tp=40-50℃时,可以得到高分子量聚苯乙烯,其中重均分子量可高达7.6×105.聚合产物中不溶于丁酮的聚苯乙烯的熔点高达268℃,主要含有间规结构聚苯乙烯和少量等规结构聚苯乙烯;偏光显微镜观察结果表明,可溶于丁酮的聚苯乙烯也是含有部分立构规整链段的聚合物.  相似文献   

8.
刘博  李世辉  李丹凤  吕奎  崔冬梅  孙广平 《应用化学》2012,29(12):1394-1398
以三烷基钪Sc(CH2SiMe3)3(THF)2和胺基膦亚胺配体为原料,经烷基消去反应合成了胺基膦亚胺(NPN)型配体螯合钪烷基配合物。 其结构用1H NMR、13C NMR、元素分析和X射线衍射分析进行了表征。 在助催化剂有机硼盐和烷基铝的作用下,该配合物对丁二烯聚合表现出了较高的催化活性。 并且随着聚合温度的降低,催化剂的1,2-选择性也随之升高。 聚合温度为-75 ℃时,产物的1,2-结构含量高达98.0%,聚合物的分子量为2.95×104,分子量分布为1.65。  相似文献   

9.
由五甲基单茂钛化合物Cp TiL3 和甲基铝氧烷 (MAO)组成的催化体系进行丁二烯聚合 .考察具有不同辅助配体L的主催化剂Cp TiL3 及外加三异丁基铝 (TIBA)对聚合的选择性 ;讨论了聚合温度、AlMAO Ti摩尔比和催化剂浓度对聚合反应的影响 .发现外加适量TIBA有助于提高催化活性 ,而且随着TIBA用量的增加聚丁二烯分子量增加 .结合钛氧化态分析 ,说明催化体系中Ti(Ⅲ )活性中心更有利于丁二烯聚合  相似文献   

10.
为了碳桥限制构型催化剂(CpCN-CGC)的工业应用,为模试提供工艺参数,我们考察了用这种催化剂,以正庚烷为溶剂,甲基铝氧烷(MAO)为助催化剂的乙烯与1-己烯共聚,考察因素包括聚合温度、乙烯压力、铝锆比、氢气压力和1-己烯浓度.研究发现聚合温度从100升高到140℃,共聚活性先升高再降低,聚合物分子量持续降低;氢气分压从0.1增加到0.8 MPa,共聚活性仍呈先升高再降低,聚合物分子量持续降低的趋势;乙烯压力从0.4升高到1.8 MPa,共聚活性先升高再降低,但聚合物分子量逐步增大;Al/Zr从500升高到1 000,共聚活性逐步增大,但聚合物分子量趋向减小.优化工艺条件为:催化剂用量为10μmol,Al/Zr=700,聚合温度为110~120℃,乙烯压力为1.2~1.4 MPa,1-己烯加入量为20 mL,聚合时间为30 min.此时共聚活性最高达到106g/(mol-Zr·h),共聚物中1-己烯插入率达到了8.34%;用13C-NMR、GPC、DSC表征了聚合产物,计算了二单元组和三段组序列分布,并发现有交替共聚片段HEHE存在.最后还讨论了在聚合物中发现的多种支链的形成机理.  相似文献   

11.
Half-titanocene complexes bearing dibenzhydryl-substituted aryloxide ligands(2a-2d) were prepared. Among them, 2c adopted a three-legged distorted tetrahedral geometry evidenced by X-ray crystallography. The poly-1,3-butadiene with high molecular weight and narrow molecular weight distribution was obtained by using these complexes as the catalysts activated with methylaluminoxane(MAO). The catalytic activities of the complexes depended on their structures. The Ti―O―C bond in the complexes with large angle afforded them with higher activity, while Cp*-based complexes exhibited lower activities than the Cp-based analogues. The activity of complex increased with increasing the polymerization temperature while the selectivity remained no change, indicating the high thermal stability. Furthermore, the polymerization of 1,3-butadiene catalyzed by 2a/MAO at 0 °C has been found in a living fashion.  相似文献   

12.
The catalytic system Co/methylaluminoxane/tert-butyl chloride has been studied and optimized for the polymerization of 1,3-butadiene to high cis-1,4-polybutadiene. The ratio of the individual catalyst components was investigated to achieve maximum conversion, stereoregularity, and molecular weight. It was found that the specific order of addition of catalyst components to the feedstock and aging time therein has critical influence in the polymerization reaction. This can be attributed to the rate of chlorinating the aluminoxane and the stability of the active catalyst sites obtained. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3277–3284, 1999  相似文献   

13.
Herein, we demonstrate the synthesis of a well-defined diblock copolymer consisting of isotactic polystyrene(iPS) and linear polyethylene, isotactic polystyrene-block-polyethylene(iPS-b-PE),by the combination ofsequential monomer addition and hydrogenation. Isospecific living polymerization of styrene and living trans-1,4-polymerization of 1,3-butadienewere catalyzed by 1,4-dithiabutandiyl-2,2′-bis(6-cumenyl-4-methylphenoxy) titanium dichloride(complex 1) activated by triisobutyl aluminum modified methylaluminoxane(MMAO) at room temperature to provide highly isotactic polystyrene(iPS) and 1,4-trans-polybutadiene(1,4-trans-PBD) with narrow molecular weight distribution. Furthermore, the iPS-b-1,4-trans-PBD was synthesized via sequential monomer addition in the presence ofcomplex 1 and MMAO.The hydrogenation of the 1,4-trans-PBD block was promoted by RuCl_2(PPh_3)_3 used as a catalyst to produce iPS-b-PE.  相似文献   

14.
Polymerization of ethylene in the presence of Cp2Ni (Cp: cyclopentadienyl) and methylaluminoxane affords polyethylene of high molecular weight and with high melting point. The same catalyst is active in the polymerization of styrene and 1,3-butadiene to give partially isotactic polystyrene and 1,4-cis-polybutadiene, respectively.  相似文献   

15.
A novel catalyst system based on nickel(II) tetraphenylporphyrin (Ni(II)TPP) and methylaluminoxane for styrene polymerization was developed. This catalyst system has a high thermal stability and show fairly good activity. The obtained polystyrene (PS) was isotactic‐rich atactic polymer by 13C NMR analysis, and its molecular weight distribution was rather narrow (Mw/Mn ≈ 1.6, by GPC analysis). ESR revealed that Ni(II)TPP π cation radicals were formed in the polymerization and could remain in the resulting PS stably. The mechanism of the polymerization was discussed and a special coordination mechanism was proposed. The PS product containing Ni(II)TPP π cation radicals can be used as a potential functional material. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1240–1248, 2008  相似文献   

16.
The cyclodimerization of 1,3-butadiene was performed to synthesize 1,5-cyclooctadiene by using nickel-phosphite based catalyst system. The optimization of cyclodimerization reaction was done to achieve up to 80% selectivity towards 1,5-cyclooctadiene. 1,5-Cyclooctadiene, thus synthesized, was subsequently employed as a chain transfer agent (CTA) for controlling the molecular weight (M.W.) of cis-polybutadiene rubber (BR) in cobalt-complex catalyzed 1,3-butadiene polymerization reaction. The M.W. of BR was reduced from 6.7 to 1.88 × 105 g/mol by escalating the concentration of 1,5-cyclooctadiene from 0% to 0.5% with respect to 1,3-butadiene (monomer) concentration. Similar reducing trend was observed for the Mooney viscosity and gel content of BR with increasing 1,5-cyclooctadiene concentration. The efficacy of 1,5-cyclooctadiene as a CTA for 1,3-butadiene polymerization reaction was further explored by conducting polymerization reaction in various solvents and at higher monomer conversion (∼70%). The effect of 4-vinyl cyclohexene, which was a dominant byproduct during cyclodimerization of 1,3-butadiene, was also investigated. The presence of 4-vinyl cyclohexene has shown adverse effect in the polymerization reaction and was not functioning as a chain transfer agent. Finally, a feasibility of replacement of commercially used gaseous CTA, 1,2-butadiene, by in-house synthesized liquid CTA, 1,5-cyclooctadiene, was also investigated.  相似文献   

17.
稀土膦酸酯盐-烷基铝体系催化正辛基异氰酸酯配位聚合   总被引:1,自引:0,他引:1  
报道了由稀土膦酸酯盐-烷基铝组成的催化体系在温和条件下催化正辛基异氰酸酯(n-OctNCO)的配位聚合特征. 研究发现, 以Nd(P204)3/Al(i-Bu)3组成的稀土催化体系是正辛基异氰酸酯聚合的良好催化剂. 系统考察了正辛基异氰酸酯在该催化体系下的本体、溶液聚合的聚合规律和溶液聚合反应动力学. 用1H NMR, FTIR, DSC, TGA和GPC等分析测试手段对所得到的聚合物进行了表征.  相似文献   

18.
Summary: A simulation tool was developed for the industrial solution polymerization of 1,3-butadiene with a Nd-based homogeneous Ziegler-Natta catalyst system. Insight into underlying reaction mechanisms was gained from laboratory experiments. Besides the chain growth reaction, the following steps were identified: catalyst formation, deactivation reactions, and molecular weight control reactions. A kinetic model based on this reaction scheme was developed to quantitatively describe butadiene conversion and product molecular weight distribution. By including process characteristics, the laboratory (batch) model was transferred to the industrial production process. A correlation function relates product molecular weight to the relevant product property Mooney viscosity. This polymerization model was successfully applied, e.g. to optimize product grade transitions and to maintain high product quality by predicting the influence of process changes.  相似文献   

19.
The copolymerization of ethylene with cyclopentene catalyzed by three α‐diimine nickel(II) complexes in the presence of methylaluminoxane (MAO) was investigated. High‐molecular‐weight branched ethylene/cyclopentene copolymers with only cis‐1,3‐enchained cyclopentene units, which has not been reported previously, were obtained. The catalytic activity, cyclopentene incorporation, copolymer molecular weight, and molecular‐weight distribution could be controlled over a wide range through the variation of the catalyst structure and polymerization conditions, including cyclopentene concentration in the feed and polymerization temperature. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2186–2192, 2008  相似文献   

20.
Inoue等用四苯基卟啉(TPP)与εt_2AlCl的作用产物四苯基卟啉氯化铝(TPPAICl)进行环氧乙烷、环氧丙烷(PO)、β-丙内酯的开环聚合与嵌段共聚合已有很多报道,但Inoue近期文章也有己内酯开环聚合的报道,但1986前只用于开丙内酯聚合。所以我们1986年的文章(即本文的文献[2]是最早用此催化剂进行ε-己内酯聚合的。我们用此催化剂进行了CL的开环聚合。至于CL的嵌段共聚合,Endo等报道了用TPPAlCl/甲  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号