首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme that downregulates the insulin receptor. Inhibition of PTP1B is expected to improve insulin action, and the design of small molecule PTP1B inhibitors to treat type II diabetes has received considerable attention. In this work, NMR-based screening identified a nonselective competitive inhibitor of PTP1B. A second site ligand was also identified by NMR-based screening and then linked to the catalytic site ligand by rational design. X-ray data confirmed that the inhibitor bound with the catalytic site in the native, "open" conformation. The final compound displayed excellent potency and good selectivity over many other phosphatases. The modular approach to drug design described in this work should be applicable for the design of potent and selective inhibitors of other therapeutically relevant protein tyrosine phosphatases.  相似文献   

2.
蛋白酪氨酸磷酸酶1B (protein tyrosine phosphatase 1B, PTP1B)是当前开发治疗糖尿病药物的优秀靶标, 也是钒配合物抗糖尿病作用相关的重要靶蛋白. 研究了三种含氮平面杂环螯合配体2,2’-联咪唑(L1), 2,2’-联吡啶(L2), 1,10-邻菲咯啉(L3)的氧钒配合物对PTP1B以及碱性磷酸酶(alkaline phosphatase, ALP)的体外抑制作用. 结果表明, 1∶1和2∶1型配位的氧钒化合物均表现出对PTP1B较强的抑制活性, IC50值在120~260 nmol/L间, 抑制能力接近双麦芽酚氧钒配合物(BMOV). 抑制动力学实验表明这些氧钒配合物对PTP1B的抑制模式均为竞争性抑制, 抑制常数在20~160 nmol/L. 其对PTP1B抑制活性较ALP高103倍, 表明氧钒配合物对两种磷酸酶的抑制具有一定的选择性.  相似文献   

3.
Protein tyrosine phosphatases (PTPs) are critical cell-signaling molecules. Inhibitors that are selective for individual PTPs would be valuable tools for dissecting complicated phosphorylation networks. However, the common architecture of PTP active sites impedes the discovery of such compounds. To achieve target selectivity, we have redesigned a PTP/inhibitor interface. Site-directed mutagenesis of a prototypical phosphatase, PTP1B, was used to generate "inhibitor-sensitized" PTPs. The PTP1B mutants were targeted by modifying a broad specificity PTP inhibitor with chemical groups that are sterically incompatible with wild-type PTP active sites. From a small panel of putative inhibitors, compounds that selectively inhibit Ile219Ala PTP1B over the wild-type enzyme were identified. Importantly, the corresponding mutation also conferred novel inhibitor sensitivity to T-cell PTP, suggesting that a readily identifiable point mutation can be used to generate a variety of inhibitor-sensitive PTPs.  相似文献   

4.
合成出了一系列新型基于咔唑的单-/双-碳酰腙衍生物3和4.利用1H NMR、13C NMR、IR和元素分析对其进行了结构表征.评价了目标化合物对蛋白酪氨酸磷酸酶1B(PTP1B)的抑制活性,讨论了结构与活性的关系.实验结果显示,大部分化合物对PTP1B具有良好的抑制活性,其中1,5-双[(9-丁基-3-咔唑基)亚甲基]碳酰腙(4c)的抑制活性最高,IC50=(4.81±0.41)mmol/L,且活性高于对照药物齐墩果酸.对目标化合物1-[(9-庚基-3-咔唑基)亚甲基]碳酰腙(3f)和4c进行分子对接研究和密度泛函理论(DFT)计算.分子对接结果表明,化合物3f和4c结合到PTP1B酶由螺旋α3和α6形成的活性位点,与PTP1B酶通过氢键、极性、疏水和p-p等相互作用形成了稳定的复合物.  相似文献   

5.
合成了一系列新型的基于咔唑的单-/双-硫代碳酰腙衍生物.利用IR、1H NMR、13C NMR和元素分析对其进行了结构表征.评价了目标化合物对Cdc25B和PTP1B的抑制活性,讨论了其结构与活性的关系.实验结果显示,大部分目标化合物对Cdc25B和PTP1B表现出良好的抑制活性.其中,1,5-双[(9-戊基-3-咔唑基)亚甲基]硫代碳酰腙(4d)对Cdc25B的抑制活性最高,IC50为(0.23±0.02)μg/m L.1,5-双[(9-乙基-3-咔唑基)亚甲基]硫代碳酰腙(4a)对PTP1B的抑制活性最高, IC50为(1.00±0.16)μg/m L.对目标化合物4a和4d进行分子对接研究和密度泛函理论(DFT)计算,结果表明,目标化合物4d和4a分别进入到了Cdc25B和PTP1B酶的活性位点区域,有活性作用的主要是硫代碳酰腙和咔唑基团.  相似文献   

6.
设计合成了18个以吡唑桥连1,3,4-噁二唑和1,3,5-三嗪的新型多杂环分子[7A(a~f),7B(a~f)和7C(a~f)];通过红外光谱(IR)、核磁共振波谱(NMR)和高分辨质谱(HRMS)等对目标分子进行了结构表征;评价了目标分子对蛋白酪氨酸磷酸酯酶1B(PTP1B)和细胞分裂周期25磷酸酯酶B(Cdc25B)的抑制活性.结果表明,所有目标分子对PTP1B和Cdc25B均有较好的抑制活性,其中,9个目标分子表现出优异的PTP1B和Cdc25B抑制效果,IC50值低于齐墩果酸(PTP1B抑制活性测试参照物)和正钒酸钠(Cdc25B抑制活性测试阳性参照物),有望成为潜在的PTP1B和Cdc25B抑制剂.  相似文献   

7.

Background

Protein tyrosine phosphatases (PTPs) like dual specificity phosphatase 5 (DUSP5) and protein tyrosine phosphatase 1B (PTP1B) are drug targets for diseases that include cancer, diabetes, and vascular disorders such as hemangiomas. The PTPs are also known to be notoriously difficult targets for designing inihibitors that become viable drug leads. Therefore, the pipeline for approved drugs in this class is minimal. Furthermore, drug screening for targets like PTPs often produce false positive and false negative results.

Results

Studies presented herein provide important insights into: (a) how to detect such artifacts, (b) the importance of compound re-synthesis and verification, and (c) how in situ chemical reactivity of compounds, when diagnosed and characterized, can actually lead to serendipitous discovery of valuable new lead molecules. Initial docking of compounds from the National Cancer Institute (NCI), followed by experimental testing in enzyme inhibition assays, identified an inhibitor of DUSP5. Subsequent control experiments revealed that this compound demonstrated time-dependent inhibition, and also a time-dependent change in color of the inhibitor that correlated with potency of inhibition. In addition, the compound activity varied depending on vendor source. We hypothesized, and then confirmed by synthesis of the compound, that the actual inhibitor of DUSP5 was a dimeric form of the original inhibitor compound, formed upon exposure to light and oxygen. This compound has an IC50 of 36 μM for DUSP5, and is a competitive inhibitor. Testing against PTP1B, for selectivity, demonstrated the dimeric compound was actually a more potent inhibitor of PTP1B, with an IC50 of 2.1 μM. The compound, an azo-bridged dimer of sulfonated naphthol rings, resembles previously reported PTP inhibitors, but with 18-fold selectivity for PTP1B versus DUSP5.

Conclusion

We report the identification of a potent PTP1B inhibitor that was initially identified in a screen for DUSP5, implying common mechanism of inhibitory action for these scaffolds.
  相似文献   

8.
合成出了一系列含苯并咪唑/芳氧甲基骨架的3,6-二取代三唑并噻二唑衍生物3a~3l,其结构经傅里叶变换红外光谱仪(FT-IR)、核磁共振波谱仪(NMR)和元素分析得以确认。 评价了它们对细胞分裂周期25B磷酸酶(Cdc25B)/蛋白酪氨酸磷酸酶1B(PTP1B)的抑制活性,讨论了构效关系。 生物活性测试结果显示,化合物3a对Cdc25B和PTP1B的抑制活性最高,其半数抑制浓度(IC50)值分别为(0.46±0.02) μg/mL和(1.77±0.40) μg/mL。 所得研究结果为开发新型Cdc25B/PTP1B抑制剂提供了参考依据。  相似文献   

9.
In the present study, we investigated the structure-activity relationship of naturally occurring hesperetin derivatives, as well as the effects of their glycosylation on the inhibition of diabetes-related enzyme systems, protein tyrosine phosphatase 1B (PTP1B) and α-glycosidase. Among the tested hesperetin derivatives, hesperetin 5-O-glucoside, a single-glucose-containing flavanone glycoside, significantly inhibited PTP1B with an IC50 value of 37.14 ± 0.07 µM. Hesperetin, which lacks a sugar molecule, was the weakest inhibitor compared to the reference compound, ursolic acid (IC50 = 9.65 ± 0.01 µM). The most active flavanone hesperetin 5-O-glucoside suggested that the position of a sugar moiety at the C-5-position influences the PTP1B inhibition. It was observed that the ability to inhibit PTP1B is dependent on the nature, position, and number of sugar moieties in the flavonoid structure, as well as conjugation. In the kinetic study of PTP1B enzyme inhibition, hesperetin 5-O-glucoside led to mixed-type inhibition. Molecular docking studies revealed that hesperetin 5-O-glucoside had a higher binding affinity with key amino residues, suggesting that this molecule best fits the PTP1B allosteric site cavity. The data reported here support hesperetin 5-O-glucoside as a hit for the design of more potent and selective inhibitors against PTP1B in the search for a new anti-diabetic treatment.  相似文献   

10.
Regulating insulin and leptin levels using a protein tyrosine phosphatase 1B (PTP1B) inhibitor is an attractive strategy to treat diabetes and obesity. Glycyrrhetinic acid (GA), a triterpenoid, may weakly inhibit this enzyme. Nonetheless, semisynthetic derivatives of GA have not been developed as PTP1B inhibitors to date. Herein we describe the synthesis and evaluation of two series of indole- and N-phenylpyrazole-GA derivatives (4a–f and 5a–f). We measured their inhibitory activity and enzyme kinetics against PTP1B using p-nitrophenylphosphate (pNPP) assay. GA derivatives bearing substituted indoles or N-phenylpyrazoles fused to their A-ring showed a 50% inhibitory concentration for PTP1B in a range from 2.5 to 10.1 µM. The trifluoromethyl derivative of indole-GA (4f) exhibited non-competitive inhibition of PTP1B as well as higher potency (IC50 = 2.5 µM) than that of positive controls ursolic acid (IC50 = 5.6 µM), claramine (IC50 = 13.7 µM) and suramin (IC50 = 4.1 µM). Finally, docking and molecular dynamics simulations provided the theoretical basis for the favorable activity of the designed compounds.  相似文献   

11.
Protein tyrosine phosphatase 1B (PTP1B), a major negative regulator of the insulin and leptin signaling pathway, is a potential target for therapeutic intervention against diabetes and obesity. The recent discovery of an allosteric site in PTP1B has created an alternate strategy in the development of PTP1B targeted therapy. The current study investigates the molecular interactions between the allosteric site of PTP1B with two caffeoyl derivatives, chlorogenic acid (CGA) and cichoric acid (CHA), using computational strategies. Molecular docking analysis with CGA and CHA at the allosteric site of PTP1B were performed and the resulting protein-ligand complexes used for molecular dynamics simulation studies for a time scale of 10 ns. Results show stable binding of CGA and CHA at the allosteric site of PTP1B. The flexibility of the WPD loop was observed to be constrained by CGA and CHA in the open (inactive), providing molecular mechanism of allosteric inhibition. The allosteric inhibition of CGA and CHA of PTP1B was shown to be favorable due to no restriction by the α-7 helix in the binding of CGA and CHA at the allosteric binding site. In conclusion, our results exhibit an inhibitory pattern of CGA and CHA against PTP1B through potent binding at the allosteric site.  相似文献   

12.
A small library of 1-(isoquinolin-1-yl)guanidine is constructed efficiently via a silver triflate-catalyzed three-component reaction of 2-alkynylbenzaldehyde, sulfonohydrazide, with carbodiimide. The preliminary biological screens of these isoquinoline library members have been evaluated, which show promising results as PTP1B inhibitor and HCT-116 inhibitor.  相似文献   

13.
Protein tyrosine phosphatase 1beta (PTP1beta) acts as a negative regulator of insulin signaling. Selective inhibition of PTP1beta has served as a potential drug target for the treatment of type 2 diabetes mellitus. We evaluated the inhibitory effect of Phellinus linteus against PTP1beta as part of our ongoing search for natural therapeutic and preventive agents for diabetes mellitus. Fractions of the P. linteus extract were found to exhibit significant inhibitory activities against PTP1beta. In an attempt to identify bioactive components, we isolated, from the most active ethyl acetate fraction, five hispidin derivatives (phelligridimer A, davallialactone, hypholomine B, interfungins A, and inoscavin A) and four phenolic compounds (protocatechuic acid, protocatechualdehyde, caffeic acid, and ellagic acid). The chemical structures of these compounds were elucidated from spectroscopic evidence and by comparison with published data. All the compounds strongly inhibited PTP1beta activity in an in vitro assay; their IC50 values ranged from 9.0 +/- 0.01 to 58.2 +/- 0.3 microM. Our results indicated that the hispidin skeleton may be an important moiety for inhibitory activity of the above compounds against PTP1beta. Thus, hispidin derivatives could be a potent new class of natural PTP1beta inhibitors.  相似文献   

14.
首次设计并合成了16个新型1,2,4-三唑与1,3,4-噻二唑双杂环修饰的酰胺硫醚衍生物,并对其进行了结构表征。分别评价了目标分子对蛋白酪氨酸磷酸酶1B(PTP1B)和细胞分裂周期25磷酸酶B(Cdc25B)抑制活性,结果发现:16个目标分子对PTP1B具有良好的抑制活性,其中8-C-d和8-D-c的抑制作用最佳,半抑制浓度(IC_(50)值)分别为(1.19±0.22)mg/L和(1.08±0.09)mg/L,优于阳性参照物齐墩果酸(IC_(50)=(1.27±0.19)mg/L),有望作为抗糖尿病药物先导物;对Cdc25B抑制活性测试中,11个目标分子表现出良好的活性,其中8-A-d、8-C-d和8-D-c抑制活性的IC_(50)值分别为(0.97±0.05)、(1.06±0.03)和(0.94±0.11)mg/L,低于阳性参照物Na_3VO_4(IC_(50)=(1.25±0.14)mg/L),有望作为抗肿瘤药物先导物。  相似文献   

15.
Russian Journal of General Chemistry - A new series of urea and thiourea bearing thiophene-2-carboxalate derivatives has been designed against protein tyrosine phosphatase 1B (PTP1B) active site,...  相似文献   

16.
Based on the fact that petroselinic acid showed good inhibitory activity (IC50=6.99 µmol/L) against protein tyrosine phophatase 1B(PTP1B) in vitro,a series of novel N-(alkoxyphenyl)-aminocarbonyl benzoic acid derivatives were designed and synthesised. The results indicated that most of the derivatives showed more potent activities against PTP1B. Especially, compound 13 had obvious activity with an IC50 of 106 nmol/L in vitro.  相似文献   

17.
Anti—diabetes Agents—I:Tetralone Derivative from Juglans regia   总被引:1,自引:0,他引:1  
A new compound,4-hydroxy-α-tetralone-4-O-β-D-[6‘‘‘‘‘‘‘‘-O-(3“,4“,5“-trihydroxybenzoyl)glucopyranoside(1),together with a known compound,4-hydroxy-α-tetralone(2),has been isolated from the roots of Juglans regia.2 showed moderate bioactivity against protein tyrosine phosphatase 1B(PTP1B).  相似文献   

18.
Six copper complexes of Schiff base ligands containing 3,5-substituted-4-salicylideneamino-3,5-dimethyl-1,2,4-triazole have been synthesized and well characterized. The structures of complexes 1 and 2 were determined by X-ray crystal analysis. Fluorescence and potentiometric study indicated that in the physiological pH range, one ligand was dissociated from the complexes to form 1:1 mononucleus copper complexes. The complexes potently inhibit protein tyrosine phosphatase 1B (PTP1B), T-cell protein tyrosine phosphatase (TCPTP), megakaryocyte protein tyrosine phosphatase 2 (PTP-MEG2) and Src homology phosphatase 1 (SHP-1) with 3-4 fold selectivity against PTP1B over TCPTP and PTP-MEG2, and 3-9 fold over SHP-1, but display almost no inhibition against Src homology phosphatase 2 (SHP-2). Complex 1 inhibits PTP1B with a competitive model with K(i) of 30 nM. Substitution with small groups at the phenyl of the ligand does not obviously influence the inhibitory ability of the complexes.  相似文献   

19.
为构筑V型对称结构的三唑并噻二唑类衍生物, 将间苯二甲酸和5-氨基间苯二甲酸分别与3-脂肪基-1,2,4-三唑(1)缩合, 在POCl3催化下, 合成了14个V型对称结构三唑并噻二唑稠环衍生物(2a~2g和3a~3g), 其中13个化合物为首次合成.通过红外光谱、 核磁共振波谱和高分辨质谱等对目标产物的结构进行了表征. 研究了目标产物对细胞周期分裂蛋白25B(Cdc25B)和蛋白酪氨酸磷酸酶1B(PTP1B)的抑制性能, 结果发现, 部分目标产物对Cdc25B表现出良好的抑制活性, 其中化合物3b和3f的抑制活性IC50值分别为(1.34±0.39)和(0.61±0.09) μg/mL, 有望作为治疗癌症的潜在Cdc25B抑制剂; 化合物3b~3g对PTP1B均表现出良好的抑制活性, 其中化合物3b和3e的IC50值分别为(0.36±0.05)和(0.97±0.08) μg/mL, 有望作为治糖尿病的潜在PTP1B抑制剂.  相似文献   

20.
以苯亚氨基为桥,设计合成了18个含有三唑并噻二唑和均三嗪双杂环的新型分子(4a~4i和5a~5i),并利用红外光谱、核磁共振谱和高分辨质谱等技术手段对其进行了结构表征。将吗啉和四氢吡咯分别与三聚氯氰发生双取代反应合成三嗪衍生物(1A和1B),然后将1A和1B分别与对氨基苯甲酸反应,合成重要中间体(2A和2B)。通过熔融法将8种脂肪酸与二氨基硫脲缩合得1,2,4-三唑衍生物3a~3h,最后将2A和2B在三氯氧磷和四丁基溴化铵催化下分别与3a~3h反应得目标产物。为了进一步比较3-脂肪基和3-苯基对药效活性的影响,利用相同方法设计合成了目标产物4i和5i。评价了目标产物对细胞分裂周期25磷酸酯酶B(Cdc25B)和蛋白酪氨酸磷酸酶1B(PTP1B)抑制活性。结果发现:所有目标分子对Cdc25B均表现出良好的抑制活性,半抑制浓度(IC_(50)值)在2.40~0.31 mg/L之间,目标分子4a~4f和5a~5i的IC_(50)值均低于阳性参照物Na_3VO_4[(1.25±0.14)mg/L],有望成为潜在的Cdc25B抑制剂;在PTP1B测试中,14个目标分子具有优良的抑制活性,IC_(50)值在0.98~0.37 mg/L之间,低于阳性参照物齐墩果酸[(1.19±0.27)mg/L],有望成为潜在的PTP1B抑制剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号