首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 101 毫秒
1.
溶胶-凝胶法制备小颗粒(Y,Gd)BO3:Eu及其表征   总被引:10,自引:3,他引:7  
用溶胶—凝胶方法制备了平均粒径为1~2μm的小颗粒、高发射效率的(Y,Gd)BO3:Eu红色发射荧光体。用XRD、SEM、粒度分析和PL光谱对荧光体作了表征和研究。常规固相反应合成(Y,Gd)BO3:Eu需在1200℃以上才能形成均一的固溶体。而溶胶—凝胶法制取稀土正硼酸盐800℃灼烧已可形成均一的单相(Y,Gd)BO3:Eu,在1100℃可得到发光亮度最高的荧光体。它的亮度是常规固相反应于1200℃制得的荧光体的120%。采用溶胶—凝胶法制取(Y,Gd)BO3:Eu荧光体,可在相当宽的实验条件范围内得到小粒径、窄分布和高亮度的荧光体,且有良好的颗粒形貌。  相似文献   

2.
采用高温固相方法合成了(Y,Gd)(P,V)O4∶Eu3 ,经X射线结构分析确定为四方晶系,体心结构,空间群为I41/amd[141]。研究了(Y,Gd)(P,V)O4∶Eu3 在VUV及UV激发下的光谱特性,讨论了激活剂Eu3 的浓度对发光亮度的影响。(Y,Gd)(P,V)O4∶Eu3 荧光粉的发射主峰在619 nm,证明Eu3 离子占据了非反演对称中心的位置。在(Y,Gd)(P,V)O4∶Eu3 (监控619 nm)的激发谱,有一个中心位于156 nm的吸收带,它属于基质的吸收带。将(Y,Gd)(P,V)O4∶Eu3 的发光性能与PDP商用红粉(Y,Gd)BO3∶Eu3 进行了比较。(Y,Gd)(P,V)O4∶Eu3 的发射主峰在619 nm,比发射主峰为593 nm的(Y,Gd)BO3∶Eu3 色纯度好,是一种很有应用前景的发光材料。  相似文献   

3.
采用传统的高温固相反应法合成出(Y,Gd)BO3∶Tb荧光体,对所制得的荧光体进行了晶体结构分析,分析结果表明结晶良好。(Y,Gd)BO3∶Tb在147 nm真空紫外光激发下的发射主峰在544 nm(Tb3+的5D4→7F5跃迁),是一种绿色发光材料。样品的真空紫外激发光谱及紫外激发光谱表明,(Y,Gd)BO3∶Tb的基质吸收带位于150 nm附近。Gd3+离子对真空紫外区的光吸收有增强作用,存在着Gd3+→Tb3+的能量传递。测量了荧光粉在室温下的荧光衰减特性,其余辉时间约为8 m s,能够满足显示显像技术的要求。因此,(Y,Gd)-BO3∶Tb是一种有前景的PDP用绿色发光材料。  相似文献   

4.
利用共沉淀法通过控制稀土离子浓度、沉淀温度等得到稀土氧化物前驱体沉淀,再将其和H3BO3 按化学计量比混合煅烧制备出了平均粒径在 0. 5~1. 0μm的球形、粒径分布较小和无团聚的 (Y,Gd)BO3∶Eu荧光粉,其性能在一些方面优于商用荧光粉。利用X射线衍射、SEM、粒度分析仪和PL光谱进行表征。研究了不同的煅烧温度对荧光粉性能的影响,结果发现用本实验方法在 800 ℃煅烧即可得到纯相的(Y,Gd)BO3∶Eu。而传统固相合成纯相的(Y,Gd)BO3∶Eu反应温度高达 1 200℃。因本方法工艺较易控制,适于在工业生产上推广。  相似文献   

5.
均一球形PDP用荧光粉(Y,Gd)BO3:Eu的合成   总被引:3,自引:0,他引:3  
利用共沉淀法通过控制稀土离子浓度、沉淀温度等得到稀土氧化物前驱体沉淀,再将其和H3BO3按化学计量比混合煅烧制备出了平均粒径在0.5~1.0μm的球形、粒径分布较小和无团聚的(Y,Gd)BO3:Eu荧光粉,其性能在一些方面优于商用荧光粉。利用X射线衍射、SEN、粒度分析仪和PL光谱进行表征。研究了不同的煅烧温度对荧光粉性能的影响,结果发现用本实验方法在800℃煅烧即可得到纯相的(Y,Gd)BO3:Eu。而传统固相合成纯相的(Y,Gd)BO3:Eu反应温度高达1200℃。因本方法工艺较易控制,适于在工业生产上推广。  相似文献   

6.
Ln7O6(BO3)(PO4)2:Eu(Ln=La,Gd,Y)的VUV-UV激发和辐射发光   总被引:1,自引:0,他引:1  
本文报道了Ln 7O6(BO3)(PO4)2:Eu(Ln=La,Gd,Y)在VUV-UV区的激发光谱及Eu3+在可见区的发射光谱.其激发光谱包括基质在真空紫外区的激发带和激活剂离子在紫外区的Eu3+-O2-电荷迁移带,随La3+,Gd3+,Y3+离子半径逐渐减小,Eu3+-O2-电荷迁移带的重心位置逐渐向高能量方向移动,Gd7O6(BO3)(PO4)2:Eu和Y7O6(BO3)(PO4)2:Eu在真空紫外区的吸收与Eu3+-O2-电荷迁移带位于紫外区的吸收的比值要高于在La7O6(BO3)(PO4)2:Eu中的这个比值.激发能可被基质吸收,传递给激活剂离子,得到Eu3+的红光发射.在Gd7O6(BO3)(PO4)2:Eu中,5D0→7F1的发射强度较强,在Y7O6(BO3)(PO4)2:Eu中,5D0→7F2和5D0→7F3的跃迁较强.  相似文献   

7.
采用高温固相反应方法在空气中制备了M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 红色发光材料,测量结果显示,材料的主发射峰均位于613 nm处,监测613 nm发射峰时,所得材料的激发光谱相同。研究了Li ,Na 和K 对M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 材料激发与发射光谱的影响,结果显示,加入Li ,Na 和K 后,M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 材料的激发与发射光谱的峰值位置并不发生变化,但材料的激发与发射光谱的峰值强度均得到了不同程度的增强。在Li ,Na 和K 掺入浓度相同的条件下,研究发现,与加入Na 和K 时相比,加入Li 时,M3(M=Ca,Sr,Ba)Y2(BO3)4∶Eu3 材料的激发与发射光谱的峰值增强效果最明显。进而研究了Sr3Y2(BO3)4∶Eu3 材料发射峰强度随Li 掺杂浓度的变化情况,结果表明,随着Li 掺杂浓度的增大,Sr3Y2(BO3)4∶Eu3 材料发射峰强度先增大后减小,在Li 浓度为5 mol%时到达峰值,约为未掺杂时的两倍。  相似文献   

8.
初本莉  陶冶等 《发光学报》2001,22(3):263-267
本文报道了Ln7O6(BO3)(PO4)2:Eu(Ln=La,Gd,Y)在UVU-UV区的激发光谱及Eu^3 在可见区的发射光谱,其激发光谱包括基质在真空紫外区的激发带和激活剂离子在紫外区的Eu^3 -O^2-电荷迁移带,随着La^3 ,Gd^3 ,Y^3 离子半径逐渐减小,Eu^3 -O^2-电荷迁移带的重心位置逐渐向高能量方向移动,Gd7O6(BO3)(PO4)2:Eu和Y7O6(BO3)(PO4)2:Eu在真空紫外区的吸收与Eu^3 -O^2-电荷迁移带位于紫外区的吸收的比值要高于在La7O6(BO3)(PO4)2:Eu中的这个比值,激发能可被基质吸收,传递给激活剂离子,得到Eu^3 的红光发射,在Gd7O6(BO3)(PO4)2:Eu中,^5D0→^7F1的发射强度较强,在Y7O6(BO3)(PO4)2:Eu中,^5D0→^7F2和^5D0→^7F3的跃迁较强。  相似文献   

9.
采用高温固相反应合成了 (La1-xEux) (BO2 ) 3 ,利用X射线粉末衍射方法确定其晶体结构 ,利用红外光谱探讨了 [BO3 ]单元的聚合情况。根据 (La1-xEux) (BO2 ) 3 所属空间群中等效点系的对称性分析及Eu3 + 的荧光光谱 ,详细地探讨了Eu3 + 的发光性质与其所处格位点对称性的关系。La(BO2 ) 3 ∶Eu3 + 体系中 ,Eu3 + 出现较强的5D0 →7F1磁偶极跃迁 ,因而Eu3 + 主要占据点对称性为Ci 的格位 ,出现的其它跃迁是部分Eu3 + 占据偏离Ci 的格位 ,而并非占据C2 或C1格位 ,另外 ,5D0 →7F4 跃迁发射很强 ,其原因尚不清楚。选择适当的助熔剂可以提高样品的结晶程度 ,有利于Eu3 + 占据严格的Ci 格位 ,增强材料的发光性能。  相似文献   

10.
利用溶胶-凝胶法制备了Dy3+掺杂的YAl3(BO3)4荧光粉。通过X射线衍射仪(XRD)、荧光(FL)光谱仪对所合成样品的结构和发光性能进行表征。研究了Dy3+离子掺杂浓度和焙烧温度对YAl3(BO3)4∶Dy3+荧光粉的结构和发光性能的影响。结果表明:Y1-xAl3(BO3)4∶Dy3x+在Dy掺杂摩尔分数为x=0.05,焙烧温度为1 100℃时的发光强度最大。Y0.95Al3(BO3)4∶Dy30.+05荧光粉在774 nm波长光激发下,最强发射峰位于575nm。该荧光粉可将700~900 nm和290~450 nm范围内的光转换为染料敏化电池吸收的575 nm附近可见光。  相似文献   

11.
Y3Al5O12∶Eu3+磷光体的溶胶-凝胶法合成及发光特性   总被引:3,自引:0,他引:3  
以金属烷氧基化合物为原料,采用溶胶-凝胶法在1 000℃下合成了Eu3+掺杂的Y3Al5O12(YAG)磷光体.利用TG-DSC,XRD和发光光谱等对样品进行了表征.结果表明,YAG∶Eu3+的晶相形成温度为991℃.Eu3+在非晶态和晶态YAG中的发射光谱有明显差异.研究了Eu3+含量和烧结温度对Eu3+的5D0→7F1和5D0→7F2发射峰强度的影响.随煅烧温度的升高和Eu3+浓度的增加,Eu3+发射峰强度增强.  相似文献   

12.
Gd2O3:Eu纳米晶的制备及其光谱性质研究   总被引:5,自引:2,他引:3  
以EDTA为络合剂,聚乙二醇为有机分散剂,用络合溶胶—凝胶法制备出Gd2O3:Eu纳米晶。用XRD,SEM,X—射线能量色散谱仪(EDS),荧光分光光度计等分析手段对Gd2O3:Eu的纳米晶结构、形貌、组分的均匀性以及发光特性进行了研究。结果表明:EDTA—M凝胶仅在800℃焙烧即可得到颗粒细小、组分均匀、纯立方相的Gd2O3:Eu纳米晶,颗粒基本呈球形,粒径为30nm左右。对样品的激发光谱、发射光谱测定表明:Gd2O3:Eu纳米晶在269nm光激发下发红光,发射光谱谱峰在611nm,与体材料基本相同;激发光谱中电荷迁移带(CTB)明显红移,从体材料的255nm移至269nm,移动了约14nm;猝灭浓度从体材料的6%提高到8%。  相似文献   

13.
采用高温固相法合成了Ba(1-x)SrxZr(BO3)2∶Eu3 系列样品,样品Ba(1-x)SrxZr(BO3)2∶Eu3 激发谱在130~170 nm和230 nm区域有两个很强的吸收带,位于130~170 nm的吸收带主要是硼酸盐基质的吸收;位于230 nm附近的吸收主要是Eu3 电荷转移态的吸收。当在样品中以Al部分取代Zr时,电荷转移态的吸收明显增强,并且Ba(1-x)SrxZr(BO3)2∶Eu3 发射强度也会明显增强;随着x的增大,硼酸盐基质的吸收强度减弱,基质吸收带的主峰值向低能方向移动了大约30 nm。样品Ba(1-x)SrxZr(BO3)2∶Eu3 在147nm激发下,发射出主峰值位于616 nm的强红光,对应Eu3 电偶极(5D0→7F2)跃迁发射。  相似文献   

14.
以苯乙酮酸和邻菲咯啉为配体,不同摩尔比铕和惰性离子(La3 ,Y3 ,Gd3 )为中心离子,合成了系列配合物EuxRE1-xL3phen(RE=La,Y,Gd),测定了其荧光激发光谱和荧光发射光谱,研究了惰性离子(La3 ,Y3 ,Gd3 )对Eu3 荧光性能的影响.结果表明,配合物激发光谱相似,均在350~360 nm范围内出现最大激发,属于配体的吸收峰,在398 nm附近出现弱的激发为Eu3 的吸收峰;系列配合物荧光发射光谱相似,均显示Eu3 离子的特征发射光谱,位于583,595,617,654,703 nm附近出现5组强度不同的发射峰,分别归属为Eu3 的5D0-7F0,5D0-7F1,5D0-7F2,5D0-7F3,5D0-7F4能级跃迁.发射光谱表明,系列配合物中La3 离子对Eu3 的荧光发射峰峰位影响最大,EuxLa1-xL3phen中La3 的摩尔分数为0.7时,Eu3 的5D0-7F2跃迁可改变5.2 nm,而Y3 和Gd3 对Eu3 的荧光发射峰峰位影响较弱,配合物EuxY1-xL3phen和EuxGd1-xL3phen中Eu3 的荧光发射峰位变化较小,最大时仅改变2 nm;发射光谱强度表明,La3 对Eu3 的荧光发射影响最大,EuxLa1-xL3phen中La3 含量为0.7时,可使其相对荧光强度增大2倍以上,对其具有很好的敏化作用.这对人们寻找发光性能好、价格便宜的发光材料提供了理论依据.  相似文献   

15.
(Y,Gd)BO3:Tb3+的真空紫外及紫外激发光谱特性   总被引:2,自引:0,他引:2  
采用传统的高温固相反应法合成出(Y,Gd)BO3:Tb荧光体,对所制得的荧光体进行了晶体结构分析,分析结果表明结晶良好。(Y,Gd)BO3:Tb在147nm真空紫外光激发下的发射主峰在544nm(Tb^3+的^5D4→^7F5跃迁),是一种绿色发光材料。样品的真空紫外激发光谱及紫外激发光谱表明,(Y,Gd)BO3:Tb的基质吸收带位于150nm附近。Gd^3+离子对真空紫外区的光吸收有增强作用,存在着Gd^3+→Tb^3+的能量传递。测量了荧光粉在室温下的荧光衰减特性,其余辉时间约为8ms,能够满足显示显像技术的要求。因此,(Y,Gd)-BO3:Tb是一种有前景的PDP用绿色发光材料。  相似文献   

16.
崔彩娥  雷星  黄平  王磊  杨帆 《发光学报》2013,(4):416-420
采用EDTA(乙二胺四乙酸)络合溶胶-凝胶法制备了Y2O2S:Eu3+,Mg2+,Ti4+粉体。采用X射线衍射仪、扫描电子显微镜和荧光分光光度计对不同温度合成的样品性能进行测试与表征。结果表明:当硫化温度低于1 000℃时,样品为Y2O3与Y2O2S的混合相;当温度在1 050~1 100℃时,样品为纯相的Y2O2S;当温度升高到1 150℃时,再次出现Y2O3的相。硫化温度在950~1 100℃时,产物的粒径为50~300 nm。用波长为330 nm的紫外光激发样品时,626 nm处的发射对应于Eu3+的5D0-7F2跃迁。硫化温度为1 100℃时,样品的余辉时间最佳,为95 min(≥1 mcd/m2)。相比于以乙酰丙酮为络合剂的溶胶-凝胶法,EDTA络合溶胶-凝胶法制备的样品的发光性能具有较大提高。  相似文献   

17.
稀土掺杂的纳米发光材料的制备和发光   总被引:28,自引:7,他引:21       下载免费PDF全文
张慰萍  尹民 《发光学报》2000,21(4):314-319
概述了用溶胶-凝胶法制备的纳米Y2SiO5:Eu及燃烧法合成的纳米Ln2O3:Eu(Ln=Y,Gd)的发光性质,包括它们的激发光谱、发射光谱、荧光寿命,以及这些性质随颗粒尺寸的变化。着重介绍了稀土掺杂的纳米发光粉中浓度猝灭受到抑制的现象,认为这一特性为纳米发光材料的实际开发应用展示了广阔的前景。文中还对X1型Y2SiO5:Eu纳米粉中的不同发光中心的发光,和它们之间的能量传递作了讨论。  相似文献   

18.
Y 0.75 -x Gd x Al 0.10 BO 3 :Eu0.10 3+, 0.05R 3+ (R=Sc, Bi) (0.00 ≤ x ≤ 0.45) powder samples are prepared by solid-state reaction and their luminescence properties are investigated. With the replacement of Y 3+ ions by Sc 3+ (or Bi 3+ ) and Gd 3+ ions in (Y,Al)BO 3 :Eu, the intensities of emission at 254 and 147 nm are remarkably improved, because Sc 3+ ions can absorb UV light and transfer the energy to Eu 3+ ions efficiently. Moreover, Gd 3+ and Bi 3+ ions act as an intermediate "bridge" between the sensitizer and the activator (Eu 3+ ) in energy transfer to produce light in the (Y, Gd)BO 3 :Bi 3+ , Eu 3+ system more effectively. After doping an appropriate concentration of Gd 3+ into Y 0.50 Gd 0.25 Al 0.10 BO 3 :Eu0.01 3+ , Bi0.05 3+ , the emission intensity reaches its maximum, which is nearly 110% compared with the red commercial phosphor (Y,Gd)BO 3 :Eu and better chromaticity coordinates (0.650, 0.350) are obtained.  相似文献   

19.
TQ174.758.23 2006032674Y1 .34Gd0 .60Eu0 .06O3透明陶瓷材料的制备与发光性能=Fabrication and luminescence properties of Y1 .34Gd0 .60Eu0 .06O3transparent ceramics[刊,中]/陈积阳(中科院上海硅酸盐所.上海(200050)) ,施鹰…∥无机材料学报.—2006 ,21(1) .—157-161采用复合沉淀法制备了具有良好烧结活性的纳米级Y1 .34Gd0 .60Eu0 .06O3粉体。经850 ℃/2 h煅烧后,得到晶粒尺寸为30 ~40 nm,且基本无团聚的Y1 .34Gd0 .60Eu0 .06O3发光粉体,粉体比表面积为23 m2/g。该粉体经过适当的干压和等静压成型后,于1 800 ℃以上温度烧…  相似文献   

20.
采用溶胶-凝胶法制备了KBa Gd(Mo O_4)_3∶Dy~(3+)荧光粉,并借助于扫描电镜(SEM)、X射线粉末衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线等测试手段对其形貌、结构及光谱性能进行了分析。结果显示:与高温固相反应法相比,采用溶胶-凝胶法得到的样品粒径均匀,且形状更加规则。在近紫外光(390 nm)的激发下,KBa Gd(Mo O_4)_3∶Dy~(3+)荧光粉的两个主发射峰分别位于485 nm与577 nm处,样品蓝黄比约为0.7。在KBa Gd(Mo O_4)_3基质中,Dy~(3+)离子的最佳掺杂摩尔分数为10%,引起浓度猝灭的机理是激活离子间的电偶极间相互作用。随着Dy~(3+)离子浓度的升高,样品荧光寿命缩短,且荧光衰减曲线逐渐偏离单指数变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号