首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
聚赖氨酸修饰电极在抗坏血酸共存时测定肾上腺素   总被引:3,自引:0,他引:3  
在pH8.0磷酸盐缓冲溶液(PBS)中利用循环伏安法制备了聚赖氨酸修饰电极,在pH4.0 PBS中,聚赖氨酸膜对肾上腺素(EP)的电化学氧化具有明显的催化作用.利用循环伏安法测定EP还原峰电流可排除抗坏血酸(AA)干扰.肾上腺素还原峰电流与其浓度分别在6.3×10-7mol/L~1.0×10-5 mol/L与1.0×10-5mol/L~1.2×10-4 mol/L范围内呈良好线性关系,相关系数分别为0.9978与0.9975,;检出限(S/N=3)为7.2×10-8mol/L.该方法具有良好的灵敏度、选择性,已用于针剂样品分析.  相似文献   

2.
报道了肾上腺素(EP)在聚对氨基吡啶(POAP)修饰电极上的电化学行为及其测定方法。POAP修饰电极对EP的氧化有良好的电催化作用。最佳条件下,氧化峰电流与EP的浓度在5×10-8~9×10-6mol L和9×10-6~9×10-5mol L范围内呈良好线性关系,相关系数分别为0.9990和0.9997,检出限为2.5×10-9mol L。该电极寿命已超过两年,已用于实际样品中EP的测定。  相似文献   

3.
马心英  林宪杰 《应用化学》2009,26(3):287-291
利用循环伏安法制备了聚缬氨酸修饰电极,在缬氨酸浓度为0.01 mol/L的磷酸盐缓冲溶液(pH=9.0)中,起止电位范围为1.0~2.4 V,以40 mV/s扫描速率循环扫描9周进行聚合. 聚缬氨酸膜对去甲肾上腺素(NE)的电化学氧化具有明显的催化作用. 研究了NE在聚缬氨酸修饰电极上的电化学行为,建立了测定NE的电化学分析新方法. pH值在2.2~8.0范围内,研究了磷酸盐缓冲溶液pH值对NE电化学行为的影响. 结果表明,氧化还原峰电位随pH值升高发生负移;在pH=4.0磷酸盐缓冲溶液中,NE在修饰电极上呈现1对灵敏的氧化还原峰,利用循环伏安法测定NE还原峰电流可排除抗坏血酸(AA)干扰. NE在聚缬氨酸修饰电极上的还原峰电流与其浓度在4.6×10-7~1.1×10-5 mol/L和1.1×10-5~1.2×10-4 mol/L范围内呈良好线性关系;相关系数分别为0.995 7和0.991 8;检出限(S/N=3)为8.0×10-8 mol/L;其回归方程为ipc(A)=6.80×10-7+1.05c,ipc(A)=1.23×10-5+0.16c. 修饰电极具有良好的灵敏度、选择性和稳定性,可用于去甲肾上腺素针剂样品分析.  相似文献   

4.
碳纳米管修饰电极对多巴胺和肾上腺素的电分离及同时测定   总被引:17,自引:0,他引:17  
研究了多巴胺 (DA)和肾上腺素 (EP)在多壁碳纳米管 (MWNT)修饰电极上的电化学性质 ,发现该修饰电极对神经递质DA和EP有显著的增敏和电分离作用。还原峰电位差达ΔEp=390mV ,可同时测定DA和EP。DA和EP的还原峰电流与其浓度分别在 2 .0× 10 -6~ 1.0× 10 -3 mol/L和 1.0× 10 -6~ 1.0× 10 -3 mol/L浓度范围内呈良好的线性关系 ;方法的检出限分别为 1× 10 -6mol/L和 5× 10 -7mol/L。由于抗坏血酸 (AA)在MWNT修饰电极上的氧化是不可逆的 ,因此利用还原峰进行测定 ,消除了AA对DA和EP的干扰  相似文献   

5.
银掺杂聚L-天冬氨酸修饰电极的制备及对肾上腺素的测定   总被引:1,自引:0,他引:1  
陈高礼  马伟  孙登明 《应用化学》2010,27(3):353-357
利用循环伏安法,研究了银和L-天冬氨酸在玻碳电极表面电化学聚合的条件,制备了银掺杂聚L-天冬氨酸修饰电极。研究了肾上腺素在修饰电极上的电化学行为,建立了循环伏安法测定肾上腺素的新方法。在pH=3.5的磷酸盐缓冲溶液中,扫描速率为50mV/s时,肾上腺素在修饰电极上产生一对明显的氧化还原峰,峰电位分别为Epa=0.447V,Epc=0.387V。用循环伏安法测定时,氧化峰电流与肾上腺素浓度分别在8.00×10-8~1.00×10-5mol/L和1.00×10-5~1.00×10-4mol/L范围内呈良好的线性关系,检出限为8.0×10-9mol/L。  相似文献   

6.
以多壁碳纳米管修饰乙炔炭黑电极为工作电极,研究了碘离子在该修饰电极上的伏安分析特性,讨论了支持电解质种类、酸度等因素对碘离子氧化峰电流的影响,获得了最佳的实验条件. 在0.4 mol/L KH2PO4缓冲液(pH=4.0)中,从200 mV以200 mV/s的速率正向扫描至1 200 mV,碘离子在570 mV处出现一灵敏的氧化峰,峰电流比未修饰电极增大约3倍. 采用二阶导数线性扫描伏安法进行定量分析,峰电流与碘离子的浓度在2.0×10-6~1.0×10-3 mol/L范围内呈良好的线性关系,检出限为8.0×10-7 mol/L. 方法用于食盐中碘含量的测定,相对标准偏差为1.2%~1.6%,回收率为97.4%~103%.  相似文献   

7.
聚叶酸修饰电极的制备及其对肾上腺素的电催化氧化研究   总被引:1,自引:0,他引:1  
采用电化学聚合的方法,将叶酸(FA)聚合在碳糊电极(CPE)表面,制备了聚叶酸修饰碳糊电极(PFA/CPE),并研究了肾上腺素(EP)在该修饰电极上的电化学行为。实验结果显示:在pH 7.0的磷酸盐缓冲溶液中,该聚合膜对EP的氧化有显著的催化作用,EP在修饰电极上产生2个氧化峰和一个还原峰,峰电位分别为0.193V、0.4184V和-0.252V。在测定实验条件下,EP在PFA/CPE上的氧化峰电流与其浓度在2.50×10-7~1.78×10-4mol/L范围内具有良好的线性关系,检出限可达1×10-7mol/L。将该电极应用于EP实际样品的测定,效果良好。  相似文献   

8.
制备了纳米氧化铝修饰玻碳电极(nano-Al2O3/GCE/CME),用循环伏安法(CV)、线性扫描伏安法(LSV)研究了对硫磷(TP)在nano-Al2O3/GCE/CME上的电化学行为.实验表明,该修饰电极与裸电极相比能显著提高TP的氧化还原峰电流并降低其氧化峰电位.在0.1 mol/L HAc-NaAc缓冲溶液(pH =5)中,TP在该修饰电极上产生1个不可逆的还原峰( Epc1=-0.567 V)和1对可逆氧化还原峰( Epa2=0.018 V和Epc2=-0.008 V) ,氧化峰电流与TP的浓度在2.5×10-9~1.0×10-7 mol/L和1.0×10-7~1.0×10-5 mol/L范围内具有良好的线性关系,回归方程分别为: ip(μA)=0.2529+4.201C(μmol/L), r=0.9984和ip(μA)=0.6752+0.3181C(μmol/L), r=0.9946.开路富集30 s后,检出限为1.0 ×10-9 mol/L(S/N=3).在1.0×10-5 mol/L TP试液中连续测定10次,其RSD为3.8%.用此方法测定了蔬菜中TP的含量,回收率为95. 6%~100.5% ,结果满意.  相似文献   

9.
用循环伏安法制备银掺杂聚L-酪氨酸修饰玻碳电极,研究了多巴胺、肾上腺素和抗坏血酸在其电极上的电化学行为,建立了同时测定多巴胺、肾上腺素和抗坏血酸的新方法。当3种组分共存时,在磷酸盐缓冲溶液(pH6.0)中,扫描速率为140mV/s,多巴胺和肾上腺素在修饰电极上分别产生还原峰,峰电位分别为0.198和-0.205V,多巴胺和肾上腺素氧化峰重叠,峰电位为0.313V(vs.Ag/AgCl);抗坏血酸产生一个氧化峰,峰电位0.108V(vs.Ag/AgCl)。多巴胺和肾上腺素的ΔEpc=0.403V,抗坏血酸的氧化峰与多巴胺和肾上腺素的ΔEpa=0.205V,用还原峰和氧化峰可同时测定多巴胺、肾上腺素和抗坏血酸,3种组分同时测定的线性范围分别为5.0×10-6~1.0×10-4mol/L,8.0×10-6~1.0×10-4mol/L和3.0×10-5~1.0×10-3mol/L;检出限分别为5.0×10-7,8.0×10-7和5.0×10-6mol/L。本方法用于人尿液中多巴胺、肾上腺素和抗坏血酸的同时测定,结果满意。  相似文献   

10.
聚吖啶红修饰玻碳电极在抗坏血酸共存时测定肾上腺素   总被引:6,自引:0,他引:6  
研究了聚吖啶红修饰玻碳电极的制备及肾上腺素在此修饰电极上的电化学行为。在pH7.4的磷酸盐缓冲溶液中,肾上腺素在修饰电极上呈现3个峰,一个还原峰和两个氧化峰,其峰电位随着pH的增加而负移。肾上腺素浓度在1.0×10-6~1.0×10-4mol L的范围内与其氧化峰电流呈线性关系,回归方程为ip(10μA)=1.160 0.4390c(mol L),相关系数r=0.9981,检出限为1.0×10-7mol L。实验结果表明:该修饰电极能有效消除抗坏血酸的干扰,方法用于注射液中肾上腺素的检测,其回收率在93.7%~100.3%范围内。  相似文献   

11.
研究了番红花红(SFR)在玻碳电极表面聚合过程及聚合条件。SFR聚合膜对于肾上腺素(EP)的氧化能够起到明显的电催化作用。分别利用循环伏安法(CV)、差分脉冲法(DPV)、计时电流法研究了EP在pH7.4的磷酸缓冲溶液中的线性关系,发现其浓度分别在2.0×10-6~9.0×10-6mol/L、1.0×10-5~1.0×10-3mol/L(CV),2.0×10-5~4.0×10-4mol/L(DPV),2.0×10-6~5.0×10-6mol/L(计时电流法)范围内呈良好的线性关系,该电极已用于实际样品测定。  相似文献   

12.
制备了单壁碳纳米管/金-四氧化三铁纳米粒子复合材料修饰玻碳电极,用循环伏安法研究了对硫磷在该电极上的电化学行为。该电极对对硫磷具有较好的富集和催化特性,在优化条件下,对硫磷的浓度与其峰电流在2.0×10-9~1.0×10-6 mol/L范围内呈线性关系,其检出限为1.0×10-9 mol/L。对1.0×10-7 mol/L的对硫磷溶液平行测定9次的RSD为3.9%(n=9)。用该电极对不同蔬菜样品中的对硫磷进行测定,平均回收率在96.0%~105.5%之间,相对标准偏差在3.3%~3.9%之间。  相似文献   

13.
采用滴涂法和电沉积法制备了氧化石墨烯/铁氰化铈(CeFe(CN)6)纳米复合膜修饰玻碳电极。用扫描电镜对氧化石墨烯和氧化石墨烯/CeFe(CN)6纳米复合膜进行了表征。分别用循环伏安法和差分脉冲伏安法研究了扑热息痛和咖啡因在修饰电极上的电化学行为。结果表明,在0.1 mol/L醋酸盐缓冲溶液(pH5.0)中,扑热息痛和咖啡因在此修饰电极上具有良好的电化学行为,扑热息痛和咖啡因分别在1.0×10-7~6.0×10-5mol/L和1.0×10-6~1.3×10-4mol/L浓度范围内与电化学响应信号呈良好的线性关系,相关系数分别为0.990和0.992;信噪比为3时,扑热息痛和咖啡因检出限分别为5.0×10-8mol/L和5.2×10-7mol/L。将本方法用于人尿样品分析,回收率为96.1%~105.4%。  相似文献   

14.
郭宪厚  王学亮  郁章玉 《应用化学》2014,31(12):1465-1471
利用循环伏安法制备了石墨烯/铂纳米粒子杂化膜修饰电极,并利用该修饰电极研究了肾上腺素(EP)的电化学行为,建立了测定肾上腺素的电化学方法。 分别利用扫描电子显微镜(SEM)和循环伏安法对电极表面的形貌和电化学性能进行了表征。 试验优化了修饰电极制备过程中影响电极性能的条件和EP的测定条件。 试验结果表明,石墨烯/铂纳米粒子修饰电极对肾上腺素有明显的电催化作用。 在pH=5.0的柠檬酸 磷酸氢二钠缓冲溶液中,EP的氧化峰电流与其浓度在4.4×10-8~2.2×10-6 mol/L的范围内呈良好的线性关系。 线性方程为ipa(10 μA)=0.0753c(mol/L)+3.7653×10-5,r=0.9989,检出限为2.2×10-9 mol/L(S/N=3)。 修饰电极表具有良好的重现性,可用于实际样品的测定。  相似文献   

15.
利用配对试剂将二茂铁酰胺键合在L-半胱氨酸自组装单层膜(SAM)表面, 制成稳定的二茂铁/L-半胱氨酸修饰电极, 该电极在pH 7.0的磷酸盐缓冲液中有一对很好的氧化还原峰. 运用循环伏安法和交流阻抗谱详细研究了修饰电极的电化学行为, 测得电子转移系数为0.66, 表观电极反应速率常数为6.86 s-1. 该修饰电极对肾上腺素有很好的催化作用, 峰电流与肾上腺素浓度在2.0×10-7~1.0×10-5 mol·dm-3范围内呈现良好的线性关系.  相似文献   

16.
研究了鸟嘌呤(G)在番红花红聚合膜修饰的玻碳电极上的电化学行为,发现SFR聚合膜电极对G的氧化能够起到明显的电催化作用。利用差分脉冲法研究了G在磷酸盐缓冲溶液中的线性关系,发现其浓度分别在6.0×10-7~1.0×10-5mol/L、2.0×10-5~7.0×10-5mol/L范围内与峰电流呈良好的线性关系。该电极用于实际样品的测定,回收率在97.1%~102%之间。  相似文献   

17.
采用亚硝基五氰合铁酸铁(FePCNF)粉末与碳粉质量比为2∶3混合,制备了FePCNF修饰碳糊电极.研究了FePCNF修饰碳糊电极在KNO3溶液中的电化学行为和扫速、pH值及不同支持电解质的影响.该电极可用于催化氧化检测葡萄糖.实验表明:FePCNF修饰碳糊电极在0.5 mol/L KNO3溶液中有一对灵敏的氧化还原峰,峰电流与扫速呈线性关系.氧化峰电流与葡萄糖的浓度在2.0×10-6~2.4×10-5 mol/L之间有良好的线性关系(r=0.9934),检出限为6.3×10-7 mol/L.该电极具有良好的稳定性和重现性,适合于微量葡萄糖的检测.  相似文献   

18.
制备了羧基-β-环糊精与磁性石墨烯混合溶液,采用滴涂法对玻碳电极进行修饰,然后对多巴胺进行电化学测定.在pH 6.0的磷酸盐缓冲溶液(PBS)中,扫描速率为0.10 V/s时,修饰后的复合膜电极的氧化还原峰电流变化值与多巴胺的浓度在1.5×10-5~5.0×10-3 mol/L范围内呈良好的线性关系,线性方程为ipa=-0.1158c-3.4257×10-6,r2=0.9915.该电极对多巴胺具有良好的电催化作用和较高的电子传递速率,采用加标回收法测定多巴胺模拟样品,回收率为98.3%~ 103.2%,检出限为5.7 × 10-7 mol/L.  相似文献   

19.
制备了聚谷氨酸修饰玻碳电极,通过循环伏安法和差分脉冲伏安法研究了槲皮素在该修饰电极上的电化学行为。在pH 5.00的B-R缓冲液中,槲皮素在修饰电极上于0.28 V(vs Ag/AgCl)电位处产生一个灵敏的DPV阳极氧化峰,氧化峰电流与槲皮素的浓度在1.0×10-8~5×10-5 mol/L的范围内呈良好的线性关系,最低检测限为4.0×10-9 mol/L。实验表明,聚谷氨酸修饰电极可提高槲皮素的检测灵敏度,该电极用于芦丁水解产物中槲皮素的检测,回收率为103.4%~104.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号